OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 15 — Jul. 19, 2010
  • pp: 15553–15559

Tuning the extraordinary transmission in a metallic/dielectric CDC hole array by changing the temperature

Wei Wang, Yalin Lu, R. J. Knize, Kitt Reinhardt, and Shaochen Chen  »View Author Affiliations


Optics Express, Vol. 18, Issue 15, pp. 15553-15559 (2010)
http://dx.doi.org/10.1364/OE.18.015553


View Full Text Article

Enhanced HTML    Acrobat PDF (716 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Tunable extraordinary transmission via changing temperature of a porous metallic layer on top of a thin layer of dielectric strontium titanate (STO) was studied. The metallic layer has a through-hole array and each hole has a circular converging-diverging channel (CDC) shape, which induces the excitation of surface plasmon polaritons (SPPs) and then results in a controllable extraordinary optical transmission in the terahertz (THz) frequency range. We used a three-dimensional (3D) finite element method to analyze the transmission characteristics of the structure. Location and magnitude of the transmission peaks can be adjusted by hole size, converging angle, and thicknesses of metal and STO layers. Remarkably, the suggested structure presents a strong transmission dependency on temperature, which offers a new approach to actively and externally tune the transmission. This new design could lead to a family of temperature-sensitive devices working in the THz frequency range, promising in many applications including photonics, nanolithography, imaging, and sensing.

© 2010 OSA

OCIS Codes
(000.2700) General : General science

ToC Category:
Diffraction and Gratings

History
Original Manuscript: June 9, 2010
Revised Manuscript: June 20, 2010
Manuscript Accepted: June 20, 2010
Published: July 7, 2010

Citation
Wei Wang, Yalin Lu, R. J. Knize, Kitt Reinhardt, and Shaochen Chen, "Tuning the extraordinary transmission in a metallic/dielectric CDC hole array by changing the temperature," Opt. Express 18, 15553-15559 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-15-15553


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007). [CrossRef]
  2. R. Piesiewicz, T. Kleine-Ostmann, N. Krumbholz, D. Mittleman, M. Koch, J. Schoebel, and T. Kurner, “Short-range ultra-broadband terahertz communications: Concepts and perspectives,” IEEE Ant. Prop. Mag. 49(6), 24–39 (2007). [CrossRef]
  3. R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Phys. Med. Biol. 47(21), 3853–3863 (2002). [CrossRef] [PubMed]
  4. C. J. Strachan, P. F. Taday, D. A. Newnham, K. C. Gordon, J. A. Zeitler, M. Pepper, and T. Rades, “Using terahertz pulsed spectroscopy to quantify pharmaceutical polymorphism and crystallinity,” J. Pharm. Sci. 94(4), 837–846 (2005). [CrossRef] [PubMed]
  5. M. Nagel, P. H. Bolivar, M. Brucherseifer, H. Kurz, A. Bosserhoff, and R. Büttner, “Integrated THz technology for label-free genetic diagnostics,” Appl. Phys. Lett. 80(1), 154–156 (2002). [CrossRef]
  6. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998). [CrossRef]
  7. Q. Cao and P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett. 88(5), 057403 (2002). [CrossRef] [PubMed]
  8. P. Lalanne, J. P. Hugonin, and J. C. Rodier, “Theory of surface plasmon generation at nanoslit apertures,” Phys. Rev. Lett. 95(26), 263902 (2005). [CrossRef]
  9. H. J. Lezec and T. Thio, “Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,” Opt. Express 12(16), 3629–3651 (2004). [CrossRef] [PubMed]
  10. D. X. Qu, D. Grischkowsky, and W. L. Zhang, “Terahertz transmission properties of thin, subwavelength metallic hole arrays,” Opt. Lett. 29(8), 896–898 (2004). [CrossRef] [PubMed]
  11. H. Cao and A. Nahata, “Influence of aperture shape on the transmission properties of a periodic array of subwavelength apertures,” Opt. Express 12(16), 3664–3672 (2004). [CrossRef] [PubMed]
  12. F. Miyamaru and M. Hangyo, “Finite size effect of transmission property for metal hole arrays in subterahertz region,” Appl. Phys. Lett. 84(15), 2742–2744 (2004). [CrossRef]
  13. A. K. Azad, Y. Zhao, and W. Zhang, “Transmission properties of terahertz pulses through an ultrathin subwavelength silicon hole array,” Appl. Phys. Lett. 86(14), 141102 (2005). [CrossRef]
  14. J. G. Rivas, C. Schotsch, P. H. Bolivar, and H. Kurz, “Enhanced transmission of THz radiation through subwavelength holes,” Phys. Rev. B 68, (2003).
  15. C. Janke, J. G. Rivas, C. Schotsch, L. Beckmann, P. H. Bolivar, and H. Kurz, “Optimization of enhanced terahertz transmission through arrays of subwavelength apertures,” Phys. Rev. B 69(20), 205314 (2004). [CrossRef]
  16. M. Tanaka, F. Miyamaru, M. Hangyo, T. Tanaka, M. Akazawa, and E. Sano, “Effect of a thin dielectric layer on terahertz transmission characteristics for metal hole arrays,” Opt. Lett. 30(10), 1210–1212 (2005). [CrossRef] [PubMed]
  17. J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004). [CrossRef] [PubMed]
  18. A. Degiron, H. J. Lezec, W. L. Barnes, and T. W. Ebbesen, “Effects of hole depth on enhanced light transmission through subwavelength hole arrays,” Appl. Phys. Lett. 81(23), 4327–4329 (2002). [CrossRef]
  19. A. K. Azad and W. L. Zhang, “Resonant terahertz transmission in subwavelength metallic hole arrays of sub-skin-depth thickness,” Opt. Lett. 30(21), 2945–2947 (2005). [CrossRef] [PubMed]
  20. C. L. Pan, C. F. Hsieh, R. P. Pan, M. Tanaka, F. Miyamaru, M. Tani, and M. Hangyo, “Control of enhanced THz transmission through metallic hole arrays using nematic liquid crystal,” Opt. Express 13(11), 3921–3930 (2005). [CrossRef] [PubMed]
  21. J. M. Steele, Z. W. Liu, Y. Wang, and X. Zhang, “Resonant and non-resonant generation and focusing of surface plasmons with circular gratings,” Opt. Express 14(12), 5664–5670 (2006). [CrossRef] [PubMed]
  22. K. J. K. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92(18), 183901 (2004). [CrossRef] [PubMed]
  23. A. Battula, Y. L. Lu, R. J. Knize, K. Reinhardt, and S. C. Chen, “Tunable transmission at 100 THz through a metallic hole array with a varying hole channel shape,” Opt. Express 15(22), 14629–14635 (2007). [CrossRef] [PubMed]
  24. W. Wang, Y. L. Lu, R. J. Knize, K. Reinhardt, and S. C. Chen, “Tunable and polarization-selective THz range transmission properties of metallic rectangular array with a varying hole channel shape,” Opt. Express 17(9), 7361–7367 (2009). [CrossRef] [PubMed]
  25. A. Battula, S. Chen, Y. Lu, R. J. Knize, and K. Reinhardt, “Tuning the extraordinary optical transmission through subwavelength hole array by applying a magnetic field,” Opt. Lett. 32(18), 2692–2694 (2007). [CrossRef] [PubMed]
  26. P. Kuzel and F. Kadlec, “Tunable structures and modulators for THz light,” C. R. Phys. 9(2), 197–214 (2008). [CrossRef]
  27. A. K. Tagantsev, V. O. Sherman, K. F. Astafiev, J. Venkatesh, and N. Setter, “Ferroelectric materials for microwave tunable applications,” J. Electroceram. 11(1/2), 5–66 (2003). [CrossRef]
  28. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  29. A. Lavrinenko, P. I. Borel, L. H. Frandsen, M. Thorhauge, A. Harpøth, M. Kristensen, T. Niemi, and H. M. H. Chong, “Comprehensive FDTD modelling of photonic crystal waveguide components,” Opt. Express 12(2), 234–248 (2004). [CrossRef] [PubMed]
  30. H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66(7-8), 163–182 (1944). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited