OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 15 — Jul. 19, 2010
  • pp: 15560–15568

Time-resolved surface plasmon polariton coupled exciton and biexciton emission

Yikuan Wang, Tianyu Yang, Mahshid Pourmand, Jacob J. Miller, Mark T. Tuominen, and Marc Achermann  »View Author Affiliations

Optics Express, Vol. 18, Issue 15, pp. 15560-15568 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1233 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We discuss the coupling between optically excited semiconductor nanocrystals (NC) and thin metal films in both the single and multi-exciton regime. Using time-resolved photoluminescence spectroscopy, we determine the decay dynamics of free space and surface plasmon polariton (SPP) coupled emission. The two dynamics are found to be distinctly different at very small NC-metal separations and at photon energies close to the SPP resonance frequency. A comparison with numerical calculations allow us to conclude that the difference in emission dynamics is associated with the different interactions of parallel and perpendicular dipole emitters with lossy surface waves. Experiments at high excitation densities reveal that the coupling to SPPs and lossy surface waves is identical for excitons and biexcitons.

© 2010 OSA

OCIS Codes
(300.6500) Spectroscopy : Spectroscopy, time-resolved
(250.5403) Optoelectronics : Plasmonics

ToC Category:

Original Manuscript: June 10, 2010
Revised Manuscript: June 22, 2010
Manuscript Accepted: June 23, 2010
Published: July 7, 2010

Yikuan Wang, Tianyu Yang, Mahshid Pourmand, Jacob J. Miller, Mark T. Tuominen, and Marc Achermann, "Time-resolved surface plasmon polariton coupled exciton and biexciton emission," Opt. Express 18, 15560-15568 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. N. Farahani, D. W. Pohl, H. J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna: a tunable superemitter,” Phys. Rev. Lett. 95(1), 017402 (2005). [CrossRef] [PubMed]
  2. P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006). [CrossRef] [PubMed]
  3. K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express 16(26), 21793–21800 (2008). [CrossRef] [PubMed]
  4. Y. Wang, T. Yang, M. T. Tuominen, and M. Achermann, “Radiative rate enhancements in ensembles of hybrid metal-semiconductor nanostructures,” Phys. Rev. Lett. 102(16), 163001 (2009). [CrossRef] [PubMed]
  5. M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009). [CrossRef] [PubMed]
  6. R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009). [CrossRef] [PubMed]
  7. R. J. Walters, R. V. A. van Loon, I. Brunets, J. Schmitz, and A. Polman, “A silicon-based electrical source of surface plasmon polaritons,” Nat. Mater. 9(1), 21–25 (2010). [CrossRef]
  8. J. Bellessa, C. Bonnand, J. C. Plenet, and J. Mugnier, “Strong coupling between surface plasmons and excitons in an organic semiconductor,” Phys. Rev. Lett. 93(3), 036404 (2004). [CrossRef] [PubMed]
  9. Y. Fedutik, V. V. Temnov, O. Schöps, U. Woggon, and M. V. Artemyev, “Exciton-plasmon-photon conversion in plasmonic nanostructures,” Phys. Rev. Lett. 99(13), 136802 (2007). [CrossRef] [PubMed]
  10. A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007). [CrossRef] [PubMed]
  11. J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J. C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett. 9(8), 2935–2939 (2009). [CrossRef] [PubMed]
  12. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999). [CrossRef]
  13. K. H. Drexhage, “Interaction of light with monomolecular dye layers,” in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1974).
  14. I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Surface Plasmon-Coupled Emission with Gold Films,” J. Phys. Chem. B 108(33), 12568–12574 (2004). [CrossRef] [PubMed]
  15. I. Gryczynski, J. Malicka, W. Jiang, H. Fischer, W. C. W. Chan, Z. Gryczynski, W. Grudzinski, and J. R. Lakowicz, “Surface-plasmon-coupled emission of quantum dots,” J. Phys. Chem. B 109(3), 1088–1093 (2005). [CrossRef]
  16. A. Bouhelier and G. P. Wiederrecht, “Excitation of broadband surface plasmon polaritons: Plasmonic continuum spectroscopy,” Phys. Rev. B 71(19), 195406 (2005). [CrossRef]
  17. H. Raether, Surface plasmons on smooth and rough surfaces and on gratings (Springer-Verlag, Berlin; New York, 1987).
  18. M. Achermann, M. A. Petruska, S. A. Crooker, and V. I. Klimov, “Picosecond energy transfer in quantum dot Langmuir-Blodgett nanoassemblies,” J. Phys. Chem. B 107(50), 13782–13787 (2003). [CrossRef]
  19. G. W. Ford and W. H. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep. 113(4), 195–287 (1984). [CrossRef]
  20. R. R. Chance, A. Prock, and R. Silbey, “Lifetime of an Emitting Molecule near a Partially Reflecting Surface,” J. Chem. Phys. 60(7), 2744–2748 (1974). [CrossRef]
  21. I. A. Larkin, M. I. Stockman, M. Achermann, and V. I. Klimov, “Dipolar emitters at nanoscale proximity of metal surfaces: Giant enhancement of relaxation in microscopic theory,” Phys. Rev. B 69(12), 121403 (2004). [CrossRef]
  22. M. G. Bawendi, S. A. Empedocles, and R. Neuhauser, “Three-dimensional orientation measurements of symmetric single chromophores using polarization microscopy,” Nature 399(6732), 126–130 (1999). [CrossRef]
  23. A. V. Malko, A. A. Mikhailovsky, M. A. Petruska, J. A. Hollingsworth, H. Htoon, M. G. Bawendi, and V. I. Klimov, “From amplified spontaneous emission to microring lasing using nanocrystal quantum dot solids,” Appl. Phys. Lett. 81(7), 1303–1305 (2002). [CrossRef]
  24. S. E. Yalcin, Y. Wang, and M. Achermann, “Spectral bandwidth and phase effects of resonantly excited ultrafast surface plasmon pulses,” Appl. Phys. Lett. 93(10), 101103 (2008). [CrossRef]
  25. V. I. Klimov, “Optical nonlinearities and ultrafast carrier dynamics in semiconductor nanocrystals,” J. Phys. Chem. B 104(26), 6112–6123 (2000). [CrossRef]
  26. M. Achermann, J. A. Hollingsworth, and V. I. Klimov, “Multiexcitons confined within a subexcitonic volume: Spectroscopic and dynamical signatures of neutral and charged biexcitons in ultrasmall semiconductor nanocrystals,” Phys. Rev. B 68(24), 245302 (2003). [CrossRef]
  27. V. I. Klimov, A. A. Mikhailovsky, D. W. McBranch, C. A. Leatherdale, and M. G. Bawendi, “Quantization of multiparticle auger rates in semiconductor quantum dots,” Science 287(5455), 1011–1013 (2000). [CrossRef] [PubMed]
  28. B. Yang, J. E. Schneeloch, Z. Pan, M. Furis, and M. Achermann, “Radiative lifetimes and orbital symmetry of electronic energy levels of CdS nanocrystals: Size dependence,” Phys. Rev. B 81(7), 073401 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited