OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 15 — Jul. 19, 2010
  • pp: 15569–15584

Pupil coding masks for imaging polychromatic scenes with high resolution and extended depth of field

Benjamin Milgrom, Naim Konforti, Michael A. Golub, and Emanuel Marom  »View Author Affiliations


Optics Express, Vol. 18, Issue 15, pp. 15569-15584 (2010)
http://dx.doi.org/10.1364/OE.18.015569


View Full Text Article

Enhanced HTML    Acrobat PDF (2587 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An algorithm for the design of imaging systems with circular symmetry that exhibit high resolution as well as extended depth of field for polychromatic incoherent illumination is presented. The approach provides a significant improvement over a publication [1] where the design was carried for a single wavelength. The approach is based on searching for a binary phase pupil mask that provides imaging with the highest cut-off spatial frequency, while assuring a desired contrast value over a given depth of field. Simulations followed by experimental results are provided.

© 2010 OSA

ToC Category:
Imaging Systems

History
Original Manuscript: March 16, 2010
Revised Manuscript: May 3, 2010
Manuscript Accepted: May 19, 2010
Published: July 8, 2010

Citation
Benjamin Milgrom, Naim Konforti, Michael A. Golub, and Emanuel Marom, "Pupil coding masks for imaging polychromatic scenes with high resolution and extended depth of field," Opt. Express 18, 15569-15584 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-15-15569


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Ben-Eliezer, N. Konforti, B. Milgrom, and E. Marom, “An optimal binary amplitude-phase mask for hybrid imaging systems that exhibit high resolution and extended depth of field,” Opt. Express 16(25), 20540–20561 (2008). [PubMed]
  2. J. Ojeda-Castaneda, R. Ramos, and A. Noyola-Isgleas, “High focal depth by apodization and digital restoration,” Appl. Opt. 27(12), 2583–2586 (1988). [PubMed]
  3. J. Ojeda-Castaneda, E. Tepichin, and A. Diaz, “Arbitrary high focal depth with a quasioptimum real and positive transmittance apodizer,” Appl. Opt. 28(13), 2666–2669 (1989). [PubMed]
  4. J. Ojeda-Castaneda and L. R. Berriel-Valdos, “Zone plate for arbitrary high focal depth,” Appl. Opt. 29(7), 994–997 (1990). [PubMed]
  5. E. R. Dowski and W. T. Cathey, “Extended depth of field through wave-front coding,” Appl. Opt. 34(11), 1859 (1995). [PubMed]
  6. J. van der Gracht, E. R. Dowski, M. G. Taylor, and D. M. Deaver, “Broadband behavior of an optical-digital focus-invariant system,” Opt. Lett. 21(13), 919–921 (1996). [PubMed]
  7. S. S. Sherif, W. T. Cathey, and E. R. Dowski, “Phase plate to extend the depth of field of incoherent hybrid imaging systems,” Appl. Opt. 43(13), 2709–2721 (2004). [PubMed]
  8. W. Chi and N. George, “Electronic imaging using a logarithmic asphere,” Opt. Lett. 26(12), 875–877 (2001).
  9. W. Chi and N. George, “Computational imaging with the logarithmic asphere: theory,” J. Opt. Soc. Am. A 20(12), 2260–2273 (2003).
  10. S. Prasad, V. P. Pauca, and J. Robert, Plemmons, Todd C. Torgersen and Joseph van der Gracht, “Pupil-phase optimization for extended focus, aberration corrected imaging systems”, Proc. SPIE 5559, 335–345 (2004).
  11. S. Prasad, T. C. Torgersen, V. P. Pauca, R. J. Plemmons, and J. van der Gracht, “High resolution imaging using integrated optical systems,” Int. J. Imaging Syst. Technol. 14(2), 67–74 (2004).
  12. J. van der Gracht, V. P. Pauca, H. Setty, R. Narayanswamy, R. Plemmons, S. Prasad, and T. Torgersen, "Iris recognition with enhanced depth-of-field image acquistion," Proc. SPIE 5438, 120–129 (2004).
  13. D. S. Barwick, “Increasing the information acquisition volume in iris recognition systems,” Appl. Opt. 47(26), 4684–4691 (2008). [PubMed]
  14. H. Wang and F. Gan, “High focal depth with a pure-phase apodizer,” Appl. Opt. 40(31), 5658–5662 (2001).
  15. H. Wang and F. Gan, “Phase-shifting apodizers for increasing focal depth,” Appl. Opt. 41(25), 5263–5266 (2002). [PubMed]
  16. X. Gao, Z. Fei, W. Xu, and F. Gan, “Tunable three-dimensional intensity distribution by a pure phase-shifting apodizer,” Appl. Opt. 44(23), 4870–4873 (2005). [PubMed]
  17. E. Ben-Eliezer and E. Marom, “Aberration-free superresolution imaging via binary speckle pattern encoding and processing,” J. Opt. Soc. Am. A 24(4), 1003–1010 (2007).
  18. E. Ben-Eliezer, N. Konforti, and E. Marom, “Super resolution imaging with noise reduction and aberration elimination via random structured illumination and processing,” Opt. Express 15(7), 3849–3863 (2007). [PubMed]
  19. E. Ben-Eliezer, Z. Zalevsky, E. Marom, and N. Konforti, “All-optical extended depth of field imaging system,” J. Opt. A, Pure Appl. Opt. 5(5), S 164– S 169 (2003).
  20. E. Ben-Eliezer, Z. Zalevsky, E. Marom, and N. Konforti, “All-optical extended depth of field imaging system,” Proc. SPIE 4829, 221 (2002).
  21. E. Ben-Eliezer, E. Marom, N. Konforti, and Z. Zalevsky, “Experimental realization of an imaging system with an extended depth of field,” Appl. Opt. 44(14), 2792–2798 (2005). [PubMed]
  22. E. Ben-Eliezer, E. Marom, N. Konforti, and Z. Zalevsky, “Radial mask for imaging systems that exhibit high resolution and extended depths of field,” Appl. Opt. 45(9), 2001–2013 (2006). [PubMed]
  23. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996) 126–151.
  24. H. H. Hopkins, “The Frequency response of a defocus optical system,” Proc. R. Soc. Lond. A Math. Phys. Sci. 231(1184), 91–103 (1955).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited