OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 15 — Jul. 19, 2010
  • pp: 15585–15590

Electroluminescence from n-In2O3:Sn randomly assembled nanorods/p-SiC heterojunction

H. Y. Yang, S. F. Yu, H. K. Liang, T. P. Chen, J. Gao, and T. Wu  »View Author Affiliations


Optics Express, Vol. 18, Issue 15, pp. 15585-15590 (2010)
http://dx.doi.org/10.1364/OE.18.015585


View Full Text Article

Enhanced HTML    Acrobat PDF (1101 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Room-temperature electroluminescence (EL) has been realized from Sn-doped In2O3 (In2O3:Sn) nanorods. Heterojunction light-emitting diode (LED) was formed by depositing a layer of randomly packed n-In2O3:Sn nanorods onto a p-type 4H-SiC substrate. It is found that the emission intensity of the heterojunction LED under forward bias can be maximized by doping the In2O3 nanorods with 3 mol. % of Sn. Furthermore, two emission peaks of the EL spectra are observed at ~395 and ~440 nm. These ultraviolet and visible peaks are attributed to the radiative recombination at Sn induced and intrinsic defect states of the In2O3:Sn nanorods.

© 2010 OSA

OCIS Codes
(230.3670) Optical devices : Light-emitting diodes
(250.0250) Optoelectronics : Optoelectronics

ToC Category:
Optical Devices

History
Original Manuscript: March 30, 2010
Revised Manuscript: May 25, 2010
Manuscript Accepted: May 26, 2010
Published: July 8, 2010

Citation
H. Y. Yang, S. F. Yu, H. K. Liang, T. P. Chen, J. Gao, and T. Wu, "Electroluminescence from n-In2O3:Sn randomly assembled nanorods/p-SiC heterojunction," Opt. Express 18, 15585-15590 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-15-15585


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. Hara et al., “Highly efficient photon-to-electron conversion with mercurochrome-sensitized nanoporous oxide semiconductor solar cells,” Sol. Energy Mater. Sol. Cells 64(2), 115–134 (2000). [CrossRef]
  2. C. W. Dhananjay and C.-W. Chu, “Chu, “Realization of In2O3 thin film transistors through reactive evaporation process,” Appl. Phys. Lett. 91(13), 132111 (2007). [CrossRef]
  3. J. Ni, H. Yan, A. Wang, Y. Yang, C. L. Stern, A. W. Metz, S. Jin, L. Wang, T. J. Marks, J. R. Ireland, and C. R. Kannewurf, “MOCVD-derived highly transparent, conductive zinc- and tin-doped indium oxide thin films: precursor synthesis, metastable phase film growth and characterization, and application as anodes in polymer light-emitting diodes,” J. Am. Chem. Soc. 127(15), 5613–5624 (2005). [CrossRef] [PubMed]
  4. S. Kundu and P. K. Biswas, “Synthesis and photoluminescence property of nanostructured sol-gel indium tin oxide film on glass,” Chem. Phys. Lett. 414(1-3), 107–110 (2005). [CrossRef]
  5. D. J. Seo and S. H. Park, “Structural, electrical and optical properties of In2O3:Mo films deposited by spray pyrolysis,” Physica B 357, 420–427 (2005).
  6. M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, “Growth of nanowire superlattice structures for nanoscale photonics and electronics,” Nature 415(6872), 617–620 (2002). [CrossRef] [PubMed]
  7. J. G. Lu, P. C. Chang, and Z. Y. Fan, “Quasi-one-dimensional metal oxide materials - Synthesis, properties and applications,” Mater. Sci. Eng. R52, 49–91 (2006).
  8. H. J. Zhou, W. P. Cai, and L. D. Zhang, “Photoluminescence of indium-oxide nanoparticles dispersed within pores of mesoporous silica,” Appl. Phys. Lett. 75(4), 495–497 (1999). [CrossRef]
  9. M. J. Zheng, L. D. Zhang, G. H. Li, X. Y. Zhang, and X. F. Wang, “Ordered indium-oxide nanowire arrays and their photoluminescence properties,” Appl. Phys. Lett. 79(6), 839–841 (2001). [CrossRef]
  10. S. Y. Li, C. Y. Lee, P. Lin, and T. Y. Tseng, “Low temperature synthesized Sn doped indium oxide nanowires,” Nanotechnology 16(4), 451–457 (2005). [CrossRef]
  11. C. Q. Wang, D. R. Chen, X. L. Jiao, and C. L. Chen, “Lotus-root-like In2O3 nanostructures: Fabrication, characterization, and photoluminescence properties,” J. Phys. Chem. C 111(36), 13398–13403 (2007). [CrossRef]
  12. H. J. Chun, Y. S. Choi, S. Y. Bae, and J. Park, “Bicrystalline indium oxide nanobelts,” Appl. Phys., A Mater. Sci. Process. 81(3), 539–542 (2005). [CrossRef]
  13. H. Q. Cao, X. Q. Qiu, Y. Liang, Q. M. Zhu, and M. Zhao, “Room-temperature ultraviolet-emitting In2O3 nanowires,” Appl. Phys. Lett. 83(4), 761–763 (2003). [CrossRef]
  14. C. H. Liang, G. W. Meng, Y. Lei, F. Philipp, and L. D. Zhang, “Catalytic growth of semiconducting In2O3 nanofibers,” Adv. Mater. 13(17), 1330–1333 (2001). [CrossRef]
  15. C. Yuen, S. F. Yu, S. P. Lau, Rusli, T. P. Chen, Rusli, and T. P Chen, “Fabrication of n-ZnO: Al/p-SiC(4H) heterojunction light-emitting diodes by filtered cathodic vacuum arc technique,” Appl. Phys. Lett. 86(24), 241111 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited