OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 15 — Jul. 19, 2010
  • pp: 15591–15596

Controlled light-pulse propagation via dynamically induced double photonic band gaps

Ren-Gang Wan, Jun Kou, Shang-Qi Kuang, Li Jiang, and Jin-Yue Gao  »View Author Affiliations

Optics Express, Vol. 18, Issue 15, pp. 15591-15596 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1057 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We analyze the optical response of a standing-wave driven four-level atomic system with double dark resonances. Fully developed double photonic band gaps arise as a result of periodically modulated refractive index within the two electromagnetically induced transparency widows. We anticipate that the dynamically induced band gaps can be used to coherently control the propagation of light-pulses with different center frequencies and may have applications in all-optical switching and routing for quantum information networks.

© 2010 OSA

OCIS Codes
(270.0270) Quantum optics : Quantum optics
(270.1670) Quantum optics : Coherent optical effects
(160.5293) Materials : Photonic bandgap materials

ToC Category:
Quantum Optics

Original Manuscript: April 8, 2010
Revised Manuscript: June 4, 2010
Manuscript Accepted: June 16, 2010
Published: July 8, 2010

Ren-Gang Wan, Jun Kou, Shang-Qi Kuang, Li Jiang, and Jin-Yue Gao, "Controlled light-pulse propagation via dynamically induced double photonic band gaps," Opt. Express 18, 15591-15596 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36 (1997). [CrossRef]
  2. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005). [CrossRef]
  3. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 meters per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999). [CrossRef]
  4. M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82(26), 5229–5232 (1999). [CrossRef]
  5. M. Fleischhauer and M. D. Lukin, “Dark-state polaritons in electromagnetically induced transparency,” Phys. Rev. Lett. 84(22), 5094–5097 (2000). [CrossRef] [PubMed]
  6. S. E. Harris and L. V. Hau, “Nonlinear optics at low light levels,” Phys. Rev. Lett. 82(23), 4611–4614 (1999). [CrossRef]
  7. M. Artoni and G. C. La Rocca, “Optically tunable photonic stop bands in homogeneous absorbing media,” Phys. Rev. Lett. 96(7), 073905 (2006). [CrossRef] [PubMed]
  8. Q. Y. He, J. H. Wu, T.-J. Wang, and J.-Y. Gao, “Dynamic control of the photonic stop bands formed by a standing wave in inhomogeneous broadening solids,” Phys. Rev. A 73(5), 053813 (2006). [CrossRef]
  9. J. H. Wu, G. C. La Rocca, and M. Artoni, “Controlled light-pulse propagation in driven color centers in diamond,” Phys. Rev. B 77(11), 113106 (2008). [CrossRef]
  10. M. Bajcsy, A. S. Zibrov, and M. D. Lukin, “Stationary pulses of light in an atomic medium,” Nature 426(6967), 638–641 (2003). [CrossRef] [PubMed]
  11. A. André, M. Bajcsy, A. S. Zibrov, and M. D. Lukin, “Nonlinear optics with stationary pulses of light,” Phys. Rev. Lett. 94(6), 063902 (2005). [CrossRef] [PubMed]
  12. I. Friedler, G. Kurizki, and D. Petrosyan, “Deterministic quantum logic with photons via optically induced photonic bandgaps,” Phys. Rev. A 71(2), 023803 (2005). [CrossRef]
  13. J. H. Wu, M. Artoni, and G. C. La Rocca, “All-optical light confinement in dynamic cavities in cold atoms,” Phys. Rev. Lett. 103(13), 133601 (2009). [CrossRef] [PubMed]
  14. P. S. J. Russell, “Photonic-Crystal Fibers,” J. Lightwave Technol. 24(12), 4729–4749 (2006). [CrossRef]
  15. C. L. Cui, J. H. Wu, J. W. Gao, Y. Zhang, and N. Ba, “Double photonic bandgaps dynamically induced in a tripod system of cold atoms,” Opt. Express 18(5), 4538–4546 (2010). [CrossRef] [PubMed]
  16. M. D. Lukin, S. F. Yelin, M. Fleischhauer, and M. O. Scully, “Quantum interference effects induced by interacting dark resonances,” Phys. Rev. A 60(4), 3225–3228 (1999). [CrossRef]
  17. Y. C. Chen, Y. A. Liao, H. Y. Chiu, J. J. Su, and I. A. Yu, “Observation of the quantum interference phenomenon induced by interacting dark resonances,” Phys. Rev. A 64(5), 053806 (2001). [CrossRef]
  18. S. F. Yelin, V. A. Sautenkov, M. M. Kash, G. R. Welch, and M. D. Lukin, “Nonlinear optics via double dark resonances,” Phys. Rev. A 68(6), 063801 (2003). [CrossRef]
  19. Y. P. Niu, S. Q. Gong, R. X. Li, Z. Z. Xu, and X. Y. Liang, “Giant Kerr nonlinearity induced by interacting dark resonances,” Opt. Lett. 30(24), 3371–3373 (2005). [CrossRef]
  20. C. P. Liu and S. Q. Gong, “D. C. Cheng, X. J. Fan, and Z. Z. Xu, “Atom localization via interference of dark resonances,” Phys. Rev. A 73, 025801 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited