OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 15 — Jul. 19, 2010
  • pp: 15597–15602

Domain wall characterization in ferroelectrics by using localized nonlinearities

Xuewei Deng and Xianfeng Chen  »View Author Affiliations

Optics Express, Vol. 18, Issue 15, pp. 15597-15602 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1050 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper, a method of domain wall characterization in ferroelectrics through Cherenkov second harmonic generation by localized nonlinearities is proposed. By this method, domain wall width is estimated to be less than 10nm. High spatial angular resolution of about 10mrad in the experiment reveals the fine structures of the domain walls. Combined with scanning techniques, this method can reconstruct domain wall patterns with high resolution. This method has advantages of being nondestructive, noncontact, in situ as well as of high resolution.

© 2010 OSA

OCIS Codes
(160.2260) Materials : Ferroelectrics
(190.1900) Nonlinear optics : Diagnostic applications of nonlinear optics
(190.2620) Nonlinear optics : Harmonic generation and mixing
(190.4400) Nonlinear optics : Nonlinear optics, materials

ToC Category:
Nonlinear Optics

Original Manuscript: March 19, 2010
Revised Manuscript: May 9, 2010
Manuscript Accepted: June 7, 2010
Published: July 8, 2010

Xuewei Deng and Xianfeng Chen, "Domain wall characterization in ferroelectrics by using localized nonlinearities," Opt. Express 18, 15597-15602 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992). [CrossRef]
  2. K. Nassau, H. J. Levinstein, and G. M. Loiacono, “The domain structure and etching of freeoelectric lithium niobate,” Appl. Phys. Lett. 6(11), 228–229 (1965). [CrossRef]
  3. M. Müller, E. Soergel, and K. Buse, “Visualization of ferroelectric domains with coherent light,” Opt. Lett. 28(24), 2515–2517 (2003). [CrossRef] [PubMed]
  4. S. I. Bozhevolnyi, J. M. Hvam, K. Pedersen, F. Laurell, H. Karlsson, T. Skettrup, and M. Belmonte, “Second harmonic imaging of ferroelectric domain walls,” Appl. Phys. Lett. 73(13), 1814–1816 (1998). [CrossRef]
  5. G. Fogarty, B. Steiner, M. Cronin-Golomb, U. Laor, M. H. Garrett, J. Martin, and R. Uhrin, “Antiparallel ferroelectric domains in photorefractive barium titanate and strontium barium niobate observed by high-resolution x-ray diffraction imaging,” J. Opt. Soc. Am. B 13(11), 2636–2643 (1996). [CrossRef]
  6. S. Zhu and W. Cao, “Direct observation of ferroelectric domains in LiTaO3 using environmental scanning electron microscopy,” Phys. Rev. Lett. 79(13), 2558–2561 (1997). [CrossRef]
  7. F. Augereau, G. Despaux, and P. Saint-Gr’egoire, “Imaging ferroic domain structures with an acoustic microscope: example of PPLN,” Ferroelectrics 290(1), 29–38 (2003). [CrossRef]
  8. O. Tikhomirov, B. Red’kin, A. Trivelli, and J. Levy, “Visualization of 180° domain structures in uniaxial ferroelectrics using confocal scanning optical microscopy,” J. Appl. Phys. 87(4), 1932–1936 (2000). [CrossRef]
  9. M. Flörsheimer, R. Paschotta, U. Kubitscheck, C. Brillert, D. Hofmann, L. Heuer, G. Schreiber, C. Verbeek, W. Sohler, and H. Fuchs, “Second-harmonic imaging of ferroelectric domains in LiNbO3 with micron resolution in lateral and axial directions,” Appl. Phys. B 67(5), 593–599 (1998). [CrossRef]
  10. P. K. Tien, R. Ulrich, and R. J. Martin, “Optical second harmonic generation in form of coherent Cerenkov radiation from a thin-film waveguide,” Appl. Phys. Lett. 17(10), 447–450 (1970). [CrossRef]
  11. A. Zembrod, H. Puell, and J. Giordmaine, “Surface radiation from nonlinear optical polarization,” Opt. Quantum Electron. 1(1), 64–66 (1969).
  12. A. Fragemann, V. Pasiskevicius, and F. Laurell, “Second-order nonlinearities in domain walls of periodically poled KTiOPO4,” Appl. Phys. Lett. 85(3), 375–377 (2004). [CrossRef]
  13. D. A. Scrymgeour and V. Gopalan, “Nanoscale piezoelectric response across a single antiparallel ferroelectric domain wall,” Phys. Rev. B 72(2), 024103 (2005). [CrossRef]
  14. J. Wittborn, C. Canalias, K. V. Rao, R. Clemens, H. Karlsson, and F. Laurell, “Nanoscale imaging of domains and domain walls in periodically poled ferroelectrics using atomic force microscopy,” Appl. Phys. Lett. 80(9), 1622–1624 (2002). [CrossRef]
  15. D. A. Scrymgeour, V. Gopalan, A. Itagi, A. Saxena, and P. J. Swart, “Phenomenological theory of a single domain wall in uniaxial trigonal ferroelectrics: Lithium niobate and lithium tantalate,” Phys. Rev. B 71(18), 184110 (2005). [CrossRef]
  16. S. M. Saltiel, D. N. Neshev, W. Krolikowski, A. Arie, O. Bang, and Y. S. Kivshar, “Multiorder nonlinear diffraction in frequency doubling processes,” Opt. Lett. 34(6), 848–850 (2009). [CrossRef] [PubMed]
  17. P. Molina, M. O. Ramírez, and L. E. Bausá, “Stronitium Barium Niobate as a multifunctional two-dimensional nonlinear ‘photonic glass’,” Adv. Funct. Mater. 18(5), 709–715 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited