OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 15 — Jul. 19, 2010
  • pp: 15603–15608

1 × 2 precise electro-optic switch in periodically poled lithium niobate

Juan Huo, Kun Liu, and Xianfeng Chen  »View Author Affiliations


Optics Express, Vol. 18, Issue 15, pp. 15603-15608 (2010)
http://dx.doi.org/10.1364/OE.18.015603


View Full Text Article

Enhanced HTML    Acrobat PDF (872 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A 1 × 2 precise electro-optic switch was demonstrated in a periodically poled lithium niobate crystal. In the experiment, the optical signal was shifted to different channels by adjusting external applied electric fields. The bandwidth of the working wavelength for the switch is nearly 2nm, which makes this device has large tolerance to the drift of the working wavelength in the practical applications. Theoretical discussion about 1 × 2 precise electro-optic switch based on this structure is also presented.

© 2010 OSA

ToC Category:
Optical Devices

History
Original Manuscript: April 20, 2010
Revised Manuscript: June 12, 2010
Manuscript Accepted: June 14, 2010
Published: July 8, 2010

Citation
Juan Huo, Kun Liu, and Xianfeng Chen, "1 × 2 precise electro-optic switch in periodically poled lithium niobate," Opt. Express 18, 15603-15608 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-15-15603


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Sapriel, V. Molchanov, G. Aubin, and S. Gosselin, “Acousto-optic switch for telecommunication networks,” Proc. SPIE 5828, 68–75 (2005). [CrossRef]
  2. R. Kasahara, M. Yanagisawa, T. Goh, A. Sugita, A. Himeno, M. Yasu, and S. Matsui, “New structure of silica-based planar lightwave circuits for low-power thermo-optic switch and its application to 8×8 optical matrix switch,” J. Lightwave Technol. 20(6), 993–1000 (2002). [CrossRef]
  3. G. Berrettini, G. Meloni, A. Bogoni, and L. Poti, “All-optical 2 × 2 switch based on Kerr effect in highly nonlinear fiber for ultrafast applications,” IEEE Photon. Technol. Lett. 18, 2439–2441 (2006). [CrossRef]
  4. A. Fratalocchi, R. Asquini, and G. Assanto, “Integrated electro-optic switch in liquid crystals,” Opt. Express 13(1), 32–37 (2005). [CrossRef] [PubMed]
  5. H. Y. Wong, M. Sorel, A. C. Bryce, J. H. Marsh, and J. M. Arnold, “Monolithically integrated InGaAs-AlGaInAs Mach-Zehnder interferometer optical switch using quantum-well intermixing,” IEEE Photon. Technol. Lett. 17(4), 783–785 (2005). [CrossRef]
  6. H. Y. Wong, W. K. Tan, A. C. Bryce, J. H. Marsh, J. M. Arnold, A. Krysa, and M. Sorel, “Current injection tunable monolithically integrated InGaAs-InAlGaAs asymmetric Mach-Zehnder interferometer using quantum-well intermixing,” IEEE Photon. Technol. Lett. 17(8), 1677–1679 (2005). [CrossRef]
  7. S. Bains, “PPLN inspires new applications,” Laser Focus World 34, 16–19 (1998).
  8. G. A. Magel, M. M. Fejer, and R. L. Byer, “Quasi-phase-matched second harmonic generation of blue light in periodically poled LiNbO3,” Appl. Phys. Lett. 56(2), 108–110 (1990). [CrossRef]
  9. J. J. Zheng, Y. Q. Lu, G. P. Luo, J. Ma, Y. L. Lu, N. B. Ming, J. L. He, and Z. Y. Xu, “Visible dual-wavelength light generation in optical superlattice Er: LiNbO3 through upconversion and Quasi-phase-matched frequency doubling,” Appl. Phys. Lett. 72(15), 1808–1810 (1998). [CrossRef]
  10. C. Q. Xu, H. Okayama, and M. Kawahara, “1.5 μm band efficient broadband wavelength conversion by difference frequency generation in a periodically domain-inverted LiNbO3 channel waveguide,” Appl. Phys. Lett. 63(26), 3559–3561 (1993). [CrossRef]
  11. X. F. Chen, J. H. Shi, Y. P. Chen, Y. M. Zhu, Y. X. Xia, and Y. L. Chen, “Electro-optic Solc-type wavelength filter in periodically poled lithium niobate,” Opt. Lett. 28(21), 2115–2117 (2003). [CrossRef] [PubMed]
  12. K. Liu, J. H. Shi, and X. F. Chen, “Electro-optical flat-top bandpass Solc-type filter in periodically poled lithium niobate,” Opt. Lett. 34(7), 1051–1053 (2009). [CrossRef] [PubMed]
  13. K. Liu, J. H. Shi, and X. F. Chen, “Linear polarization-state generator with high precision in periodically poled lithium niobate,” Appl. Phys. Lett. 94(10), 101106–101108 (2009). [CrossRef]
  14. K. Liu and X. F. Chen, “Evolution of the optical polarization in a periodically poled superlattice with an external electric field,” Phys. Rev. A 80(6), 063808–063811 (2009). [CrossRef]
  15. Y. H. Chen and Y. C. Huang, “Actively Q-switched Nd:YVO4 laser using an electro-optic periodically poled lithium niobate crystal as a laser Q-switch,” Opt. Lett. 28(16), 1460–1462 (2003). [CrossRef] [PubMed]
  16. Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, “Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications,” Appl. Phys. Lett. 77(23), 3719–3721 (2000). [CrossRef]
  17. Q. Wang and J. Yao, “A high speed 2x2 electro-optic switch using a polarization modulator,” Opt. Express 15(25), 16500–16505 (2007). [CrossRef] [PubMed]
  18. D. H. Jundt, “Temperature-dependent Sellmeier equation for the index of refraction, n(e), in congruent lithium niobate,” Opt. Lett. 22(20), 1553–1555 (1997). [CrossRef]
  19. F. Liu, Q. Ye, F. Pang, J. Geng, R. Qu, and Z. Fang, “Polarization analysis and experimental implementation of PLZT electro-optical switch using fiber sagnac interferomerers,” J. Opt. Soc. Am. B 23(4), 709–713 (2006). [CrossRef]
  20. M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62(5), 435–436 (1993). [CrossRef]
  21. Y. L. Lee, N. E. Yu, C.-S. Kee, D.-K. Ko, Y.-C. Noh, B.-A. Yu, W. Shin, T.-J. Eom, K. Oh, and J. Lee, “All-optical wavelength tuning in Šolc filter based on Ti:PPLN waveguide,” Electron. Lett. 44(1), 30–32 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited