OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 15 — Jul. 19, 2010
  • pp: 15609–15617

Planar and ridge waveguides formed in LiNbO3 by proton exchange combined with oxygen ion implantation

Shao-Mei Zhang, Ke-Ming Wang, Xiangzhi Liu, Zhuanfang Bi, and Xiu-Hong Liu  »View Author Affiliations


Optics Express, Vol. 18, Issue 15, pp. 15609-15617 (2010)
http://dx.doi.org/10.1364/OE.18.015609


View Full Text Article

Enhanced HTML    Acrobat PDF (947 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on the fabrication of planar and ridge waveguides in lithium niobate by proton exchange combined with oxygen ion implantation. The implanted energy ranges from 600 to 1400 keV with a dose of 1×1015 ions/cm2. The modes in proton exchanged waveguide can be modulated by O ion implantation. There are different damage profiles in proton-exchanged and ion-implanted waveguides in Rutherford backscattering/channeling spectra. The refractive index profile in single-mode waveguide in lithium niobate has been obtained based on Intensity Calculation Method. Also ridge waveguide was fabricated on the basis of planar waveguide by Ar ion beam etching. The measured near-field intensity distributions of the ridge waveguide modes show a reasonable agreement with the simulated ones. The estimated propagation loss was ~2.2 dB/cm.

© 2010 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(130.3730) Integrated optics : Lithium niobate
(230.7370) Optical devices : Waveguides

ToC Category:
Integrated Optics

History
Original Manuscript: April 28, 2010
Revised Manuscript: June 11, 2010
Manuscript Accepted: June 23, 2010
Published: July 8, 2010

Citation
Shao-Mei Zhang, Ke-Ming Wang, Xiangzhi Liu, Zhuanfang Bi, and Xiu-Hong Liu, "Planar and ridge waveguides formed in LiNbO3 by proton exchange combined with oxygen ion implantation," Opt. Express 18, 15609-15617 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-15-15609


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. Arizmendi, “Photonic applications of lithium niobate crystals,” Phys. Status Solidi, A Appl. Res. 201(2), 253–283 (2004). [CrossRef]
  2. F. Chen, “Photonic guiding structures in lithium niobate crystals produced by energetic ion beams,” J. Appl. Phys. 106(8), 081101–081129 (2009). [CrossRef]
  3. P. Rabiei and W. H. Steier, “Lithium niobate ridge waveguides and modulators fabricated using smart guide,” Appl. Phys. Lett. 86(16), 161115–161117 (2005). [CrossRef]
  4. G. G. Bentini, M. Bianconi, A. Cerutti, M. Chiarini, G. Pennestr, C. Sada, N. Argiolas, M. Bazzan, and P. Mazzoldi, “Integrated Mach-Zehnder micro-interferometer on LiNbO3,” Opt. Lasers Eng. 45(3), 368–372 (2007). [CrossRef]
  5. F. Chen, Y. Tan, and A. Ródenas, “Ion implanted optical channel waveguides in Er3+/MgO co-doped near stoichiometric LiNbO3: a new candidate for active integrated photonic devices operating at 1.5 microm,” Opt. Express 16(20), 16209–16214 (2008). [CrossRef] [PubMed]
  6. D. Jaque, F. Chen, and Y. Tan, “Scanning confocal fluorescence imaging and micro-Raman investigations of oxygen implanted channel waveguides in Nd:MgO:LiNbO3,” Appl. Phys. Lett. 92(16), 161908–161910 (2008). [CrossRef]
  7. E. Smirnov, C. E. Rüter, D. Kip, Y. V. Kartashov, and L. Torner, “Observation of higher-order solitons in defocusing waveguide arrays,” Opt. Lett. 32(13), 1950–1952 (2007). [CrossRef] [PubMed]
  8. M. Roussey, M.-P. Bernal, N. Courjal, and F. I. Baida, “Experimental and theoretical characterization of a lithium niobate photonic crystal,” Appl. Phys. Lett. 87(24), 241101–241103 (2005). [CrossRef]
  9. A. Sjöberg, G. Arvidsson, and A. A. Lipovskii, “Characterization of waveguides fabricated by titanium diffusion in magnesium-doped lithium niobate,” J. Opt. Soc. Am. B 5(2), 285–291 (1988). [CrossRef]
  10. J. L. Jackel, C. E. Rice, and J. J. Veselka, “Proton exchange for high-index waveguides in LiNbO3,” Appl. Phys. Lett. 41(7), 607–608 (1982). [CrossRef]
  11. G. R. Paz-Pujalt, D. D. Tuschel, G. Braunstein, T. Blanton, S. T. Lee, and L. M. Salter, “Characterization of proton exchange lithium niobate waveguides,” J. Appl. Phys. 76(7), 3981–3987 (1994). [CrossRef]
  12. E. M. Rodríguez, D. Jaque, E. Cantelar, F. Cussó, G. Lifante, A. C. Busacca, A. Cino, and S. R. Sanseverino, “Time resolved confocal luminescence investigations on Reverse Proton Exchange Nd:LiNbO(3) channel waveguides,” Opt. Express 15(14), 8805–8811 (2007). [CrossRef] [PubMed]
  13. R. R. Thomson, S. Campbell, I. J. Blewett, A. K. Kar, and D. T. Reid, “Optical waveguide fabrication in z-cut lithium niobate (LiNbO3) using femtosecond pulses in the low repetition rate regime,” Appl. Phys. Lett. 88(11), 111109–111111 (2006). [CrossRef]
  14. P. D. Townsend, P. J. Chandler, and L. Zhang, Optical Effects of Ion Implantation, (Cambridge Univ. Press, Cambridge, 1994).
  15. N.-N. Dong, F. Chen, and D. Jaque, “Carbon ion implanted Nd:MgO:LiNbO(3) optical channel waveguides: an intermediate step between light and heavy ion implanted waveguides,” Opt. Express 18(6), 5951–5956 (2010). [CrossRef] [PubMed]
  16. J. Olivares, G. Garcia, A. Garcia-Navarro, F. Agullo-Lopez, O. Caballero, and A. Garcia-Cabanes, “Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation,” Appl. Phys. Lett. 86(18), 183501–183503 (2005). [CrossRef]
  17. G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys. 92(11), 6477–6483 (2002). [CrossRef]
  18. U. Hempelmann, H. Herrmann, G. Mrozynski, V. Reimann, and W. Sohler, “Integrated optical proton exchanged TM-pass polarizers in LiNbO3: modelling and experimental performance,” L. Technol. 13(8), 1750–1759 (1995). [CrossRef]
  19. F. Schrempel, T. Opfermann, J. P. Ruske, U. Grusemann, and W. Wesch, “Properties of buried waveguides produced by He-irradiation in KTP and Rb:KTP,” Nucl. Instrum. Methods Phys. Res. B 218, 209–216 (2004). [CrossRef]
  20. E. Glavas, P. D. Townsend, and M. A. Foad, “Refractive index changes in proton exchange LiNbO3 by ion implantation,” Nucl. Instrum. Methods Phys. Res. B 46(1-4), 156–159 (1990). [CrossRef]
  21. V. V. Atuchin, “Causes of refractive indices changes in He-implanted LiNbO3 and LiTaO3 waveguides,” Nucl. Instrum. Methods Phys. Sec. B 168(4), 498–502 (2000). [CrossRef]
  22. H. Hu, F. Lu, F. Chen, B.-R. Shi, K.-M. Wang, and D.-Y. Shen, “Extraordinary refractive-index increase in lithium niobate caused by low-dose ion implantation,” Appl. Opt. 40(22), 3759–3761 (2001). [CrossRef]
  23. H. Åhlfeldt, J. Webjörn, P. A. Thomas, and S. J. Teat, “Structural and optical properties of annealed proton-exchanged waveguides in z-cut LiTaO3,” J. Appl. Phys. 77(9), 4467–4476 (1995). [CrossRef]
  24. P. J. Chandler and F. L. Lama, “A new approach to the determination of planar waveguide profiles by means of a non-stationary mode index calculation,” Opt. Acta (Lond.) 33, 127–143 (1986).
  25. J. M. White and P. F. Heidrich, “Optical waveguide refractive index profiles determined from measurement of mode indices: a simple analysis,” Appl. Opt. 15(1), 151–155 (1976). [CrossRef] [PubMed]
  26. X. Liu, F. Lu, F. Chen, Y. Tan, R. Zhang, H. Liu, L. Wang, and L. Wang, “Reconstruction of extraordinary refractive index profiles of optical planar waveguides with single or double modes fabricated by O2+ ion implantation into lithium niobate,” Opt. Commun. 281(6), 1529–1533 (2008). [CrossRef]
  27. R. Regener and W. Sohler, “Loss in low-finesse Ti:LiNbO3 optical waveguide resonators,” Appl. Phys. B 36(3), 143–147 (1985). [CrossRef]
  28. L. C. Feldman, J. W. Mayer, and S. T. Picraux, Materials Analysis by Ion Channeling, (Academic Press, New York, 1982).
  29. W. K. Chu, J. W. Mayer, and M. A. Nicolet, Backscattering Spectrometry, (Academic Press, New York, 1978).
  30. P. J. F. Ziegler, Computer code SRIM ( http://www.srim.org ).
  31. X. Liu, F. Lu, F. Chen, R. Zhang, H. Liu, L. Wang, G. Fu, and H. Wang, “Reconstruction of extraordinary refractive index profile of O2+ ion-implanted LiNbO3 single-mode channel waveguide based on beam propagation method and image processing,” Opt. Commun. 274(1), 80–84 (2007). [CrossRef]
  32. A. Ródenas, “L. M. maestro, M. O. Ramírez, G. A. Torchia, L. Roso, F. Chen, and D. Jaque, “Anisotropic lattices changes in femtosecond laser inscribed Nb3+: MgO:LiNbO3 optical waveguides,” J. Appl. Phys. 106, 013110–013116 (2009). [CrossRef]
  33. Rsoft Design Group, Computer software BeamPROP version 8.0. ( http://www.rsoftdesign.com ).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited