OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 15 — Jul. 19, 2010
  • pp: 15635–15642

Magneto-optical effects in interacting localized and propagating surface plasmon modes

Jorge F. Torrado, Juan B. González-Díaz, María U. González, Antonio García-Martín, and Gaspar Armelles  »View Author Affiliations


Optics Express, Vol. 18, Issue 15, pp. 15635-15642 (2010)
http://dx.doi.org/10.1364/OE.18.015635


View Full Text Article

Enhanced HTML    Acrobat PDF (2740 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report that the effect of an external magnetic field on the propagation of surface plasmons can be effectively modified through the coupling between localized (LSP) and propagating (SPP) surface plasmons. When these plasmon modes do not interact, the main effect of the magnetic field is a modification of the wavevector of the SPP mode, leaving the LSP virtually unaffected. Once both modes start to interact, there is a strong variation of the magnetic field induced modification of the SPP dispersion curve and, simultaneously, the LSP mode becomes sensitive to the magnetic field.

© 2010 OSA

OCIS Codes
(210.3810) Optical data storage : Magneto-optic systems
(210.3820) Optical data storage : Magneto-optical materials
(240.6680) Optics at surfaces : Surface plasmons
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Optics at Surfaces

History
Original Manuscript: May 21, 2010
Revised Manuscript: June 16, 2010
Manuscript Accepted: June 17, 2010
Published: July 8, 2010

Citation
Jorge F. Torrado, Juan B. González-Díaz, María U. González, Antonio García-Martín, and Gaspar Armelles, "Magneto-optical effects in interacting localized and propagating surface plasmon modes," Opt. Express 18, 15635-15642 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-15-15635


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97(16), 167401 (2006). [CrossRef] [PubMed]
  2. A. Zvezdin and V. Kotov, Modern Magnetooptics and Magnetooptical Materials, Condensed Matter Physics (Taylor and Francis Group, New York, 1997).
  3. A. Figotin and I. Vitebskiy, “Electromagnetic unidirectionality in magnetic photonic crystals,” Phys. Rev. B 67(16), 165210 (2003). [CrossRef]
  4. Z. Yu, Z. Wang, and S. Fan, “One-way total reflection with one-dimensional magneto-optical photonic crystals,” Appl. Phys. Lett. 90(12), 121133 (2007). [CrossRef]
  5. F. D. M. Haldane and S. Raghu, “Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry,” Phys. Rev. Lett. 100(1), 013904 (2008). [CrossRef] [PubMed]
  6. Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljacić, “Reflection-free one-way edge modes in a gyromagnetic photonic crystal,” Phys. Rev. Lett. 100(1), 013905 (2008). [CrossRef] [PubMed]
  7. Z. Yu, G. Veronis, Z. Wang, and S. Fan, “One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Phys. Rev. Lett. 100(2), 023902 (2008). [CrossRef] [PubMed]
  8. Z. Wang, Y. Chong, J. D. Joannopoulos, and M. Soljacić, “Observation of unidirectional backscattering-immune topological electromagnetic states,” Nature 461(7265), 772–775 (2009). [CrossRef] [PubMed]
  9. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003). [CrossRef] [PubMed]
  10. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006). [CrossRef] [PubMed]
  11. V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. García-Martín, J. García-Martín, T. Thomay, A. Leitenstorfer, and R. Braschitsch, “Active magnetoplasmonics in hybrid metal/ferromagnet/metal microinterferometers,” Nat. Photonics 4, 107 (2010). [CrossRef]
  12. R. F. Wallis, "Surface magnetoplasmons on semiconductors," in Electromagnetic surface modes (John Wiley & Sons, 1982), Chap. 15 – , pp. 575–631.
  13. R. E. Camley, “Nonreciprocal surface waves,” Surf. Sci. Rep. 7(3-4), 103–187 (1987). [CrossRef]
  14. S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Full Photonic Band Gap for Surface Modes in the Visible,” Phys. Rev. Lett. 77(13), 2670–2673 (1996). [CrossRef] [PubMed]
  15. C. Hermann, V. A. Kosobukin, G. Lampel, J. Peretti, V. I. Safarov, and P. Bertrand, “Surface-enhanced magneto-optics in metallic multilayer films,” Phys. Rev. B 64(23), 235422 (2001). [CrossRef]
  16. J. B. González-Díaz, A. García-Martín, G. Armelles, J. M. García-Martín, C. Clavero, A. Cebollada, R. A. Lukascew, J. R. Skuza, D. P. Kumah, and R. Clarke, “Surface-magnetoplasmon nonreciprocity effects in noble-metal/ferromagnetic heterostructures,” Phys. Rev. B 76(15), 153402 (2007). [CrossRef]
  17. E. Ferreiro-Vila, J. B. González-Díaz, R. Fermento, M. U. González, A. García-Martín, J. M. García-Martín, A. Cebollada, G. Armelles, D. Meneses-Rodríguez, and E. Muñoz-Sandoval, “Intertwined magneto-optical and plasmonic effects in Ag/Co/Ag layered structures,” Phys. Rev. B 80(12), 125132 (2009). [CrossRef]
  18. J. Cesario, R. Quidant, G. Badenes, and S. Enoch, “Electromagnetic coupling between a metal nanoparticle grating and a metallic surface,” Opt. Lett. 30(24), 3404–3406 (2005). [CrossRef]
  19. A. Christ, T. Zentgraf, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Controlling the interaction between localized and delocalized surface plasmon modes: Experiment and numerical calculations,” Phys. Rev. B 74(15), 155435 (2006). [CrossRef]
  20. T. A. Kelf, Y. Sugawara, J. J. Baumberg, M. Abdelsalam, and P. N. Bartlett, “Plasmonic band gaps and trapped plasmons on nanostructured metal surfaces,” Phys. Rev. Lett. 95(11), 116802 (2005). [CrossRef] [PubMed]
  21. Y. Chu and K. B. Crozier, “Experimental study of the interaction between localized and propagating surface plasmons,” Opt. Lett. 34(3), 244–246 (2009). [CrossRef] [PubMed]
  22. A. Ghoshal, I. Divliansky, and P. G. Kik, “Experimental observation of mode-selective anticrossing in surface-plasmon-coupled metal nanoparticle arrays,” Appl. Phys. Lett. 94(17), 171108 (2009). [CrossRef]
  23. C. Dehesa-Martinez, L. Blanco-Gutierrez, M. Vélez, J. Diaz, L. M. Alvarez-Prado, and J. M. Alameda, “Magneto-optical transverse Kerr effect in multilayers,” Phys. Rev. B 64(2), 024417 (2001). [CrossRef]
  24. G. Armelles, J. B. González-Díaz, A. García-Martín, J. M. García-Martín, A. Cebollada, M. Ujué González, S. Acimovic, J. Cesario, R. Quidant, and G. Badenes, “Localized surface plasmon resonance effects on the magneto-optical activity of continuous Au/Co/Au trilayers,” Opt. Express 16(20), 16104–16112 (2008), http://www.opticsexpress.org/abstract.cfm?URI=oe-16-20-16104 . [CrossRef] [PubMed]
  25. J. B. González-Díaz, A. García-Martín, J. M. García-Martín, A. Cebollada, G. Armelles, B. Sepúlveda, Y. Alaverdyan, and M. Käll, “Plasmonic Au/Co/Au nanosandwiches with enhanced magneto-optical activity,” Small 4(2), 202–205 (2008). [CrossRef] [PubMed]
  26. A. García-Martín, G. Armelles, and S. Pereira, “Light transport in photonic crystals composed of magneto-optically active materials,” Phys. Rev. B 71(20), 205116 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited