OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 15 — Jul. 19, 2010
  • pp: 15664–15671

Detecting quantum coherence of Bose gases in optical lattices by scattering light intensity in cavity

Xiaoji Zhou, Xu Xu, Lan Yin, W. M. Liu, and Xuzong Chen  »View Author Affiliations


Optics Express, Vol. 18, Issue 15, pp. 15664-15671 (2010)
http://dx.doi.org/10.1364/OE.18.015664


View Full Text Article

Enhanced HTML    Acrobat PDF (853 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a new method of detecting quantum coherence of a Bose gas trapped in a one-dimensional optical lattice by measuring the light intensity from Raman scattering in cavity. After pump and displacement process, the intensity or amplitude of scattering light is different for different quantum states of a Bose gas, such as superfluid and Mott-Insulator states. This method can also be useful to detect quantum states of atoms with two components in an optical lattice.

© 2010 Optical Society of America

OCIS Codes
(020.5580) Atomic and molecular physics : Quantum electrodynamics
(290.5860) Scattering : Scattering, Raman
(020.1475) Atomic and molecular physics : Bose-Einstein condensates

ToC Category:
Atomic and Molecular Physics

History
Original Manuscript: January 28, 2010
Revised Manuscript: April 25, 2010
Manuscript Accepted: June 24, 2010
Published: July 9, 2010

Citation
Xiaoji Zhou, Xu Xu, Lan Yin, W. M. Liu, and Xuzong Chen, "Detecting quantum coherence of Bose gases in optical lattices by scattering light intensity in cavity," Opt. Express 18, 15664-15671 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-15-15664


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch, “Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atom,” Nature 415, 39–44 (2002). [CrossRef] [PubMed]
  2. I. Bloch, “Quantum coherence and entanglement with ultracold atoms in optical lattices,” Nature 453, 1016–1022 (2008). [CrossRef] [PubMed]
  3. E. W. Hagley, L. Deng, M. Kozuma, M. Trippenbach, Y. B. Band, M. Edwards, M. Doery, P. S. Julienne, K. Helmerson, S. L. Rolston, and W. D. Phillips, “Measurement of the Coherence of a Bose-Einstein Condensate,” Phys. Rev. Lett. 83, 3112 (1999). [CrossRef]
  4. T. Stöferle, H. Moritz, C. Schori, M. Köhl, and T. Esslinger, “Transition from a Strongly Interacting 1D Superfluid to a Mott Insulator,” Phys. Rev. Lett. 92, 130403 (2004). [CrossRef] [PubMed]
  5. I. Bloch, T. W. Hänsch, and T. Esslinger, “Measurement of the spatial coherence of a trapped Bose gas at the phase transition,” Nature 403, 166–170 (2000). [CrossRef] [PubMed]
  6. E. Altman, E. Demler, and M. Lukin, “Probing many-body states of ultracold atoms via noise correlations,” Phys. Rev. A 70, 013603 (2004). [CrossRef]
  7. M. Schellekens, R. Hoppeler, A. Perrin, J. Viana Gomes, D. Boiron, A. Aspect, and C. I. Westbrook, “Hanbury Brown Twiss Effect for Ultracold Quantum Gases,” Science 310, 648–651 (2005). [CrossRef] [PubMed]
  8. S. Fölling, F. Gerbier, A. Widera, O. Mandel, T. Gericke, and I. Bloch, “Spatial quantum noise interferometry in expanding ultracold atom clouds,” Nature 434, 481–484 (2005). [CrossRef] [PubMed]
  9. T. Jeltes, J. M. McNamara, W. Hogervorst, W. Vassen, V. Krachmalnicoff, M. Schellekens, A. Perrin, H. Chang, D. Boiron, A. Aspect, and C. I. Westbrook, “Comparison of the Hanbury Brown-Twiss effect for bosons and fermions,” Nature 445, 402–405 (2007). [CrossRef] [PubMed]
  10. M. A. Nielsen, and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, 2000).
  11. S. Inouye, A. P. Chikkatur, D. M. Stamper-Kurn, J. Stenger, D. E. Pritchard, and W. Ketterle, “Superradiant Rayleigh Scattering from a Bose-Einstein Condensate,” Science 285, 571–574 (1999). [CrossRef] [PubMed]
  12. F. Yang, X. Zhou, J. Li, Y. Chen, L. Xia, and X. Chen, “Resonant sequential scattering in two-frequency-pumping superradiance from a Bose-Einstein condensate,” Phys. Rev. A 78, 043611 (2008). [CrossRef]
  13. Y. Wu, and X. Yang, “Fully quantized theory of four-wave mixing with bosonic matter waves,” Opt. Lett. 30, 311–313 (2005). [CrossRef] [PubMed]
  14. J. Cheng, and Y.-J. Yan, “Quantum dynamics of a molecular matter-wave amplifier,” Phys. Rev. A 75, 033614 (2007). [CrossRef]
  15. D. Cl’ement, N. Fabbri, L. Fallani, C. Fort, and M. Inguscio, “Exploring Correlated 1D Bose Gases from the Superfluid to the Mott-Insulator State by Inelastic Light Scattering,” Phys. Rev. Lett. 102, 155301 (2009). [CrossRef] [PubMed]
  16. X. Xu, X. J. Zhou, and X. Z. Chen, “Spectroscopy of superradiant scattering from an array of Bose-Einstein condensates,” Phys. Rev. A 79, 033605 (2009). [CrossRef]
  17. L. E. Sadler, J. M. Higbie, S. R. Leslie, M. Vengalattore, and D. M. Stamper-Kurn, “Coherence-Enhanced Imaging of a Degenerate Bose-Einstein Gas,” Phys. Rev. Lett. 98, 110401 (2007). [CrossRef] [PubMed]
  18. F. Brennecke, T. Donner, S. Ritter, T. Bourdel, M. Köhl, and T. Esslinger, “Cavity QED with a Bose-Einstein condensate,” Nature 450, 268–271 (2007). [CrossRef] [PubMed]
  19. Y. Wu, and X. Yang, “Algebraic method for solving a class of coupled-channel cavity QED models,” Phys. Rev. A 63, 043816 (2001). [CrossRef]
  20. I. B. Mekhov, C. Maschler, and H. Ritsch, “Probing quantum phases of ultracold atoms in optical lattices by transmission spectra in cavity quantum electrodynamics,” Nat. Phys. 3, 319–323 (2007). [CrossRef]
  21. I. B. Mekhov, C. Maschler, and H. Ritsch, “Cavity-Enhanced Light Scattering in Optical Lattices to Probe Atomic Quantum Statistics,” Phys. Rev. Lett. 98, 100402 (2007). [CrossRef] [PubMed]
  22. H. Zoubi, and H. Ritsch, “Quantum phases of bosonic atoms with two levels coupled by a cavity field in an optical lattice,” Phys. Rev. A 80, 053608 (2009). [CrossRef]
  23. Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, “Strong atom field coupling for Bose-Einstein condensates in an optical cavity on a chip,” Nature 450, 272–276 (2007). [CrossRef] [PubMed]
  24. R. B. Diener, Q. Zhou, H. Zhai, and T.-L. Ho, “Criterion for Bosonic Superfluidity in an Optical Lattice,” Phys. Rev. Lett. 98, 180404 (2007). [CrossRef] [PubMed]
  25. Y. Kato, Q. Zhou, N. Kawashima, and N. Trived, “Sharp peaks in the momentum distribution of bosons in optical lattices in the normal state,” Nat. Phys. 4, 617–621 (2008). [CrossRef]
  26. Y. Wu, X. Yang, and P. T. Leung, “Theory of microcavity-enhanced Raman gain,” Opt. Lett. 24, 345–347 (1999). [CrossRef]
  27. O. Mandel, M. Greiner, A. Widera, T. Rom, T. W. Hänsch, and I. Bloch, “Coherent Transport of Neutral Atoms in Spin-Dependent Optical Lattice Potentials,” Phys. Rev. Lett. 91, 010407 (2003). [CrossRef] [PubMed]
  28. L.-M. Duan, E. Demler, and M. D. Lukin, “Controlling Spin Exchange Interactions of Ultracold Atoms in Optical Lattices,” Phys. Rev. Lett. 91, 090402 (2003). [CrossRef] [PubMed]
  29. G. H. Chen, and Y. S. Wu, “Quantum phase transition in a multicomponent Bose-Einstein condensate in optical lattices,” Phys. Rev. A 67, 013606 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited