OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 15 — Jul. 19, 2010
  • pp: 15697–15703

Polymer-composite fibers for transmitting high peak power pulses at 1.55 microns

Zachary Ruff, Dana Shemuly, Xiang Peng, Ofer Shapira, Zheng Wang, and Yoel Fink  »View Author Affiliations

Optics Express, Vol. 18, Issue 15, pp. 15697-15703 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (13767 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Hollow-core photonic bandgap fibers (PBG) offer the opportunity to suppress highly the optical absorption and nonlinearities of their constituent materials, which makes them viable candidates for transmitting high-peak power pulses. We report the fabrication and characterization of polymer-composite PBG fibers in a novel materials system, polycarbonate and arsenic sulfide glass. Propagation losses for the 60μm-core fibers are less than 2dB/m, a 52x improvement over previous 1D-PBG fibers at this wavelength. Through preferential coupling the fiber is capable of operating with over 97% the fiber’s power output in the fundamental (HE11) mode. The fiber transmitted pulses with peak powers of 11.4 MW before failure.

© 2010 OSA

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.2290) Fiber optics and optical communications : Fiber materials
(160.5293) Materials : Photonic bandgap materials

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: April 6, 2010
Revised Manuscript: June 17, 2010
Manuscript Accepted: June 28, 2010
Published: July 9, 2010

Zachary Ruff, Dana Shemuly, Xiang Peng, Ofer Shapira, Zheng Wang, and Yoel Fink, "Polymer-composite fibers for transmitting high peak power pulses at 1.55 microns," Opt. Express 18, 15697-15703 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. Richou, I. Schertz, I. Gobin, and J. Richou, “Delivery of 10-MW Nd:YAG laser pulses by large-core optical fibers: dependence of the laser-intensity profile on beam propagation,” Appl. Opt. 36(7), 1610–1614 (1997). [CrossRef] [PubMed]
  2. Y. Matsuura, K. Hanamoto, S. Sato, and M. Miyagi, “Hollow-fiber delivery of high-power pulsed Nd:YAG laser light,” Opt. Lett. 23(23), 1858–1860 (1998). [CrossRef]
  3. S. O. Konorov, V. P. Mitrokhin, A. B. Fedotov, D. A. Sidorov-Biryukov, V. I. Beloglazov, N. B. Skibina, A. V. Shcherbakov, E. Wintner, M. Scalora, and A. M. Zheltikov, “Laser ablation of dental tissues with picosecond pulses of 1.06-microm radiation transmitted through a hollow-core photonic-crystal fiber,” Appl. Opt. 43(11), 2251–2256 (2004). [CrossRef] [PubMed]
  4. N. K. T. Photonics, Data sheet. http://www.nktphotonics.com/ , Accessed November 2009.
  5. S. G. Johnson, M. Ibanescu, M. Skorobogatiy, O. Weisberg, T. D. Engeness, M. Soljacic, S. A. Jacobs, J. D. Joannopoulos, and Y. Fink, “Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers,” Opt. Express 9(13), 748–779 (2001). [CrossRef] [PubMed]
  6. P. Yeh, A. Yariv, and E. Marom, “Theory of Bragg fiber,” J. Opt. Soc. Am. 68(9), 1196–1201 (1978). [CrossRef]
  7. Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282(5394), 1679–1682 (1998). [CrossRef] [PubMed]
  8. Y. Fink, D. J. Ripin, S. Fan, C. Chen, J. D. Joannepoulos, and E. L. Thomas, “Guiding optical light in air using an all- dielectric structure,” J. Lightwave Technol. 17(11), 2039–2041 (1999). [CrossRef]
  9. K. Kuriki, O. Shapira, S. Hart, G. Benoit, Y. Kuriki, J. Viens, M. Bayindir, J. Joannopoulos, and Y. Fink, “Hollow multilayer photonic bandgap fibers for NIR applications,” Opt. Express 12(8), 1510–1517 (2004). [CrossRef] [PubMed]
  10. B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,” Nature 420(6916), 650–653 (2002). [CrossRef] [PubMed]
  11. T. Engeness, M. Ibanescu, S. Johnson, O. Weisberg, M. Skorobogatiy, S. Jacobs, and Y. Fink, “Dispersion tailoring and compensation by modal interactions in OmniGuide fibers,” Opt. Express 11(10), 1175–1196 (2003). [CrossRef] [PubMed]
  12. O. Shapira, K. Kuriki, N. D. Orf, A. F. Abouraddy, G. Benoit, J. F. Viens, A. Rodriguez, M. Ibanescu, J. D. Joannopoulos, Y. Fink, and M. M. Brewster, “Surface-emitting fiber lasers,” Opt. Express 14(9), 3929–3935 (2006). [CrossRef] [PubMed]
  13. E. Bychkov, M. Miloshova, D. L. Price, C. J. Benmore, and A. Lorriaux, “Short, intermediate and mesoscopic range order in sulfur-rich binary glasses,” J. Non-Cryst. Solids 352(1Issue 1), 63–70 (2006). [CrossRef]
  14. Z. U. Borisova, Glassy Semiconductors (Plenum, New York, 1981).
  15. O. Shapira, A. F. Abouraddy, J. D. Joannopoulos, and Y. Fink, “Complete modal decomposition for optical waveguides,” Phys. Rev. Lett. 94(14), 143902 (2005). [CrossRef] [PubMed]
  16. V. Nguyen, F. Sanghera, B. Cole, P. Pureza, F. H. Kung, and I. D. Aggarwal, “Fabrication of Arsenic Sulfide Optical Fiber with Low Hydrogen Impurities,” J. Am. Ceram. Soc. 85(8), 2056–2058 (2002). [CrossRef]
  17. A. Mendez and T. F. Morse, Specialty Optical Fibers Handbook (Elsevier. 2007).
  18. D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, and K. W. Koch, “A. L. Gaeta* “Generation of Megawatt Optical Solitons in Hollow-Core Photonic Band-Gap Fibers,” Science 1702, 301 (2003).
  19. A. V. Smith and B. T. Do, “Bulk and surface laser damage of silica by picosecond and nanosecond pulses at 1064 nm,” Appl. Opt. 47(26), 4812–4832 (2008). [CrossRef] [PubMed]
  20. J. D. Shephard, F. Couny, P. S. Russell, J. D. C. Jones, J. C. Knight, and D. P. Hand, “Improved hollow-core photonic crystal fiber design for delivery of nanosecond pulses in laser micromachining applications,” Appl. Opt. 44(21), 4582–4588 (2005). [CrossRef] [PubMed]
  21. M. Borghesi, A. J. Mackinnon, R. Gaillard, O. Willi, and A. A. Offenberger, “Guiding of a 10-TW picosecond laser pulse through hollow capillary tubes,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 57(5), R4899–R4902 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 4 Fig. 1 Fig. 2
Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited