OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 15 — Jul. 19, 2010
  • pp: 15757–15768

Hidden progress: broadband plasmonic invisibility

Jan Renger, Muamer Kadic, Guillaume Dupont, Srdjan S. Aćimović, Sébastien Guenneau, Romain Quidant, and Stefan Enoch  »View Author Affiliations

Optics Express, Vol. 18, Issue 15, pp. 15757-15768 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1152 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



One of the key challenges in current research into electromagnetic cloaking is to achieve invisibility at optical frequencies and over an extended bandwidth. There has been significant progress towards this using the idea of cloaking by sweeping under the carpet of Li and Pendry. Here, we show that we can harness surface plasmon polaritons at a metal surface structured with a dielectric material to obtain a unique control of their propagation. We exploit this control to demonstrate both theoretically and experimentally cloaking over an unprecedented bandwidth (650-900 nm). Our non-resonant plasmonic metamaterial is designed using transformational optics extended to plasmonics and allows a curved reflector to mimic a flat mirror. Our theoretical predictions are validated by experiments mapping the surface light intensity at a wavelength of 800 nm.

© 2010 OSA

OCIS Codes
(160.1190) Materials : Anisotropic optical materials
(240.0240) Optics at surfaces : Optics at surfaces
(240.6680) Optics at surfaces : Surface plasmons
(260.2110) Physical optics : Electromagnetic optics
(160.3918) Materials : Metamaterials

ToC Category:

Original Manuscript: June 3, 2010
Revised Manuscript: June 25, 2010
Manuscript Accepted: June 25, 2010
Published: July 9, 2010

Jan Renger, Muamer Kadic, Guillaume Dupont, Srdjan S. Aćimović, Sébastien Guenneau, Romain Quidant, and Stefan Enoch, "Hidden progress: broadband plasmonic invisibility," Opt. Express 18, 15757-15768 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006). [CrossRef] [PubMed]
  2. U. Leonhardt, “Optical conformal mapping,” Science 312(5781), 1777–1780 (2006). [CrossRef] [PubMed]
  3. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006). [CrossRef] [PubMed]
  4. F. Zolla, S. Guenneau, A. Nicolet, and J. B. Pendry, “Electromagnetic analysis of cylindrical invisibility cloaks and the mirage effect,” Opt. Lett. 32(9), 1069–1071 (2007). [CrossRef] [PubMed]
  5. A. Greenleaf, M. Lassas, and G. Uhlmann, “On nonuniqueness for Calderons inverse problem,” Math. Res. Lett. 10, 685-693 (2003).
  6. W. X. Jiang, T. J. Cui, X. M. Yang, R. Liu, and D. R. Smith, “Invisibility cloak without singularity,” Appl. Phys. Lett. 93, 194102 (2008). [CrossRef]
  7. U. Leonhardt and T. Tyc, “Broadband invisibility by non-Euclidean cloaking,” Science 323(5910), 110–112 (2009). [CrossRef]
  8. J. Li and J. B. Pendry, “Hiding under the carpet: a new strategy for cloaking,” Phys. Rev. Lett. 101(20), 203901 (2008). [CrossRef] [PubMed]
  9. A. Diatta, G. Dupont, S. Guenneau, and S. Enoch, “Broadband cloaking and mirages with flying carpets,” Opt. Express 18(11), 11537–11551 (2010). [CrossRef] [PubMed]
  10. L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics 3(8), 461–463 (2009). [CrossRef]
  11. R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband Ground-Plane Cloak,” Science 323(5912), 366–369 (2009). [CrossRef] [PubMed]
  12. J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568 (2009). [CrossRef] [PubMed]
  13. T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337 (2010). [CrossRef] [PubMed]
  14. W. Cai, U. K. Chettiar, A. V. Kildiev, and V. M. Shalaev, “Optical Cloaking with metamaterials,” Nat. Photonics 1, 224–227 (2007). [CrossRef]
  15. M. Farhat, S. Guenneau, A. B. Movchan, and S. Enoch, “Achieving invisibility over a finite range of frequencies,” Opt. Express 16(8), 5656–5661 (2008). [CrossRef] [PubMed]
  16. A. Greenleaf, Y. Kurylev, M. Lassas, and G. Uhlmann, “Isotropic transformation optics: approximate acoustic and quantum cloaking,” N. J. Phys. 10(11), 115024 (2008). [CrossRef]
  17. M. Farhat, S. Enoch, S. Guenneau, and A. B. Movchan, “Broadband cylindrical acoustic cloak for linear surface waves in a fluid,” Phys. Rev. Lett. 101(13), 134501 (2008). [CrossRef] [PubMed]
  18. M. Farhat, S. Guenneau, and S. Enoch, “Ultrabroadband elastic cloaking in thin plates,” Phys. Rev. Lett. 103(2), 024301 (2009). [CrossRef] [PubMed]
  19. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998). [CrossRef]
  20. P. J. Bliek, R. Deleuil, L. C. Botten, R. C. McPhedran, and D. Maystre, “Inductive grids in the region of diffraction anomalies - Theory, experiment, and applications,” IEEE MTT 28(10), 1119–1125 (1980). [CrossRef]
  21. J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004). [CrossRef] [PubMed]
  22. A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1), 016623 (2005). [CrossRef] [PubMed]
  23. F. J. García de Abajo, G. Gómez-Santos, L. A. Blanco, A. G. Borisov, and S. V. Shabanov, “Tunneling mechanism of light transmission through metallic films,” Phys. Rev. Lett. 95(6), 1–4 (2005). [CrossRef]
  24. I. I. Smolyaninov, Y. J. Hung, and C. C. Davis, “Two-dimensional metamaterial structure exhibiting reduced visibility at 500 nm,” Opt. Lett. 33(12), 1342–1344 (2008). [CrossRef] [PubMed]
  25. B. Baumeier, T. A. Leskova, and A. A. Maradudin, “Cloaking from surface plasmon polaritons by a circular array of point scatterers,” Phys. Rev. Lett. 103(24), 246803 (2009). [CrossRef]
  26. H. Raether, “Surface Plasmons: On Smooth and Rough Surfaces and Gratings,” Springer Verlag: Berlin (1988).
  27. E. D. Palik, “Handbook of Optical Constants of Solids,” Academic, London, (1985)
  28. J. F. Thompson, B. K. Soni, and N. P. Weatherill, “Handbook of Grid Generation,” CRC Press, Boca Raton, (1998).
  29. J. Renger, S. Grafström, and L. M. Eng, “Direct excitation of surface plasmon polaritons in nanopatterned metal surfaces and thin films,” Phys. Rev. B 76(4), 045431 (2007). [CrossRef]
  30. A. Bouhelier, T. Huser, H. Tamaru, H.-J. Guntherodt, D. W. Pohl, F. I. Baida, and D. Van Labeke, “Plasmon optics of structured silver films,” Phys. Rev. B 63(15), 155404 (2001). [CrossRef]
  31. S. Randhawa, M. U. González, J. Renger, S. Enoch, and R. Quidant, “Design and properties of dielectric surface plasmon Bragg mirrors,” Opt. Express 18(14), 14496–14510 (2010). [CrossRef] [PubMed]
  32. I. I. Smolyaninov, “Transformational optics of plasmonic metamaterials,” New J. Phys. 10(11), 115033 (2008). [CrossRef]
  33. P. A. Huidobro, M. L. Nesterov, L. Martin-Moreno, and F. J. García-Vidal, “Transformation Optics for Plasmonics,” http://arxiv.org/abs/1003.1154 .
  34. Y. Liu, T. Zentgraf, G. Bartal, and X. Zhang, “Transformational Plasmon Optics,” http://arxiv.org/abs/1003.1326 .
  35. I. I. Smolyaninov, V. N. Smolyaninova, A. V. Kildishev, and V. M. Shalaev, “Anisotropic metamaterials emulated by tapered waveguides: application to optical cloaking,” Phys. Rev. Lett. 102(21), 213901 (2009). [CrossRef] [PubMed]
  36. M. Kadic, S. Guenneau, and S. Enoch, “Transformational plasmonics: cloak, concentrator and rotator for SPPs,” Opt. Express 18(11), 12027–12032 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 4
Fig. 5 Fig. 6

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited