OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 15 — Jul. 19, 2010
  • pp: 15784–15789

Tunable fabry-perot interferometer from ferroelectric polymer based on surface energy modification

Hongyu Zhen, Guolong Li, Keyu Zhou, and Xu Liu  »View Author Affiliations

Optics Express, Vol. 18, Issue 15, pp. 15784-15789 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1016 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Surface energy modification was utilized in the fabrication of hollow transmission Fabry-Perot interferometer (FPI) for the first time. Polydimethylsiloxane (PDMS) was used to modify the surface energy of substrate for the self-assembly of poly(vinylidenefluoride -trifluoroethylene) [P(VDF-TrFE)] 70/30 mol% copolymer film on given areas, which is simple and low destructive for the photoelectric device. A strain of 7.12% under a field of 22.3 MV/m was observed from the copolymer film, which led to the FPI with a tunable range of 54 nm at wavelength of 604 nm.

© 2010 OSA

OCIS Codes
(120.2230) Instrumentation, measurement, and metrology : Fabry-Perot
(160.5470) Materials : Polymers
(130.2260) Integrated optics : Ferroelectrics

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: April 20, 2010
Revised Manuscript: June 12, 2010
Manuscript Accepted: June 23, 2010
Published: July 12, 2010

Hongyu Zhen, Guolong Li, Keyu Zhou, and Xu Liu, "Tunable fabry-perot interferometer from ferroelectric polymer based on surface energy modification," Opt. Express 18, 15784-15789 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Gamble and P. H. Lissberger, “Reflection filter multilayers of metallic and dielectric thin films,” Appl. Opt. 28(14), 2838–2846 (1989). [CrossRef] [PubMed]
  2. S. R. Mallinson, “Wavelength-selective filters for single-mode fiber WDM systems using Fabry-Perot interferometers,” Appl. Opt. 26(3), 430–436 (1987). [CrossRef] [PubMed]
  3. F. Wang, K. K. Li, V. Fuflyigin, H. Jiang, J. Zhao, P. Norris, and D. Goldstein, “Thin ferroelectric interferometer for spatial light modulations,” Appl. Opt. 37(32), 7490–7495 (1998). [CrossRef]
  4. E. Spiller, “Reflective multilayer coatings for the far uv region,” Appl. Opt. 15(10), 2333–2338 (1976). [CrossRef] [PubMed]
  5. J.-S. Sheng and J.-T. Lue, “Ultraviolet narrow-band rejection filters composed of multiple metal and dielectric layers,” Appl. Opt. 31(28), 6117–6121 (1992). [CrossRef] [PubMed]
  6. J. Xu, L. Zhou, and M. Thakur, “Electro-optic modulation using an organic single crystal film in a Fabry–Perot cavity,” Appl. Phys. Lett. 72(2), 153–154 (1998). [CrossRef]
  7. A. A. M. Saleh and J. Stone, “Two-stage Fabry-Perot filters as demultiplexers in optical FDMALANs,” J. Lightwave Technol. 7(2), 323–330 (1989). [CrossRef]
  8. M. Lee, H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, and D. J. McGee, “Broadband modulation of light by using an electro-optic polymer,” Science 298(5597), 1401–1403 (2002). [CrossRef] [PubMed]
  9. N. Benter, R. P. Bertram, E. Soergel, K. Buse, D. Apitz, L. B. Jacobsen, and P. M. Johansen, “Large-area Fabry-Perot modulator based on electro-optic polymers,” Appl. Opt. 44(29), 6235–6239 (2005). [CrossRef] [PubMed]
  10. R. U. A. Khan, O.-P. Kwon, A. Tapponnier, A. N. Rashid, and P. Günter, “Supramolecular ordered organic thin films for nonlinear optical and optoelectronic applications,” Adv. Funct. Mater. 16(2), 180–188 (2006). [CrossRef]
  11. T.-D. Kim, J. D. Luo, J.-W. Ka, S. Hau, Y. Q. Tian, Z. W. Shi, N. M. Tucker, S.-H. Jang, J.-W. Kang, and A. K.-Y. Jen, “Ultralarge and thermally stable electro-optic activities from diels–alder crosslinkable polymers containing binary chromophore systems,” Adv. Mater. 18(22), 3038–3042 (2006). [CrossRef]
  12. H. Y. Gan, H. X. Zhang, C. T. DeRose, J. D. Luo, and A. K.-Y. Jen, “Hybrid Fabry-Pérot étalon using an electro-optic polymer for optical modulation,” Appl. Phys. Lett. 89(14), 141113 (2006). [CrossRef]
  13. H. Y. Gan, H. X. Zhang, C. T. DeRose, R. A. Norwood, N. Peyghambarian, M. Fallahi, J. D. Luo, B. Q. Chen, and A. K.-Y. Jen, “Low drive voltage Fabry-Pérot étalon device tunable filters using poledhybrid sol-gel materials,” Appl. Phys. Lett. 89(4), 041127 (2006). [CrossRef]
  14. D.-Y. Jeong, Y. K. Wang, M. Huang, Q. M. Zhang, G. J. Kavarnos, and F. Bauer, “Electro-optical response of the ferroelectric relaxor polyvinylidene fluoride-trifluoroethylene-chlorofluoroethylene terpolymer,” J. Appl. Phys. 96(1), 316–319 (2004). [CrossRef]
  15. T. T. Wang, J. M. Herbert, and A. M. Glass, The applications of the Ferroelectric Polymers (Chapman and Hall, New York, 1988).
  16. Q. M. Zhang, V. Bharti, and X. Zhao, “Giant electrostriction and relaxor ferroelectric behavior in electron-irradiated poly(vinylidene fluoride-trifluoroethylene) copolymer,” Science 280(5372), 2101–2104 (1998). [CrossRef] [PubMed]
  17. Z.-M. Li, M. D. Arbatti, and Z.-Y. Cheng, “Recrystallization study of high-energy electron-irradiated P(VDF−TrFE) 65/35 copolymer,” Macromolecules 37(1), 79–85 (2004). [CrossRef]
  18. Y. Y. Lu, J. Claude, B. Neese, Q. M. Zhang, and Q. Wang, “A modular approach to ferroelectric polymers with chemically tunable curie temperatures and dielectric constants,” J. Am. Chem. Soc. 128(25), 8120–8121 (2006). [CrossRef] [PubMed]
  19. F. Xia, Z. Y. Cheng, H. S. Xu, H. F. Li, Q. M. Zhang, G. J. Kavarnos, R. Y. Ting, G. A. Sadek, and K. D. Belfield, “High electromechanical responses in a poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) terpolymer,” Adv. Mater. 14(21), 1574–1577 (2002). [CrossRef]
  20. G. S. Buckley, C. M. Roland, R. Casalini, A. Petchsuk, and T. C. Chung, “Electrostrictive properties of poly(vinylidenefluoride− trifluoroethylene−chlorotrifluoroethylene),” Chem. Mater. 14(6), 2590–2593 (2002). [CrossRef]
  21. H. Y. Zhen, H. Ye, X. Liu, D. X. Zhu, H. F. Li, Y. Y. Lu, and Q. Wang, “Widely tunable reflection-type Fabry-Perot interferometer based on relaxor ferroelectric poly(vinylidenefluoride-chlorotrifluoroethylene-trifluoroethylene),” Opt. Express 16(13), 9595–9600 (2008). [CrossRef] [PubMed]
  22. X. Y. Hu, P. Jiang, C. Y. Ding, H. Yang, and Q. H. Gong, “Picosencond and low-power all-optical switching based on an organic photonic-bandgap microcavity,” Nat. Photonics 2(3), 185–189 (2008). [CrossRef]
  23. S. H. Hur, D. Y. Khang, C. Kocabas, and J. A. Rogers, “Nanotransfer printing by use of noncovalent surface forces: Applications to thin-film transistors that use single-walled carbon nanotube networks and semiconducting polymers,” Appl. Phys. Lett. 85(23), 5730 (2004). [CrossRef]
  24. N. V. Bhat and D. J. Upadhyay, “Plasma-induced surface modification and adhesion enhancement of polypropylene surface,” J. Appl. Phys. 86, 925–936 (2002).
  25. D. Aronov and G. Rosenman, “Surface energy modification by electron beam,” Surf. Sci. 601(21), 5042–5049 (2007). [CrossRef]
  26. D. Chowdhury, R. Maoz, and J. Sagiv, “Wetting driven self-assembly as a new approach to template-guided fabrication of metal nanopatterns,” Nano Lett. 7(6), 1770–1778 (2007). [CrossRef] [PubMed]
  27. G. Y. Jung, Z. Y. Li, W. Wu, Y. Chen, D. L. Olynick, S. Y. Wang, W. M. Tong, and R. S. Williams, “Vapor-phase self-assembled monolayer for improved mold release in nanoimprint lithography,” Langmuir 21(4), 1158–1161 (2005). [CrossRef] [PubMed]
  28. Y. W. Tang, X. Z. Zhao, H. L. W. Chan, and C. L. Choy, “Effect of electron irradiation on poly(vinylidene fluoride-trifluoroethylene) copolymers,” Appl. Phys. Lett. 77(11), 1713 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited