OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 15 — Jul. 19, 2010
  • pp: 15790–15806

Efficient planar fiber-to-chip coupler based on two-stage adiabatic evolution

Anatol Khilo, Miloš A. Popović, Mohammad Araghchini, and Franz X. Kärtner  »View Author Affiliations

Optics Express, Vol. 18, Issue 15, pp. 15790-15806 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1898 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A new, efficient adiabatic in-plane fiber-to-chip coupler design is proposed. In this design, the light from the fiber is coupled into a low-index waveguide with matching mode size. The mode is first adiabatically reduced in size with a rib taper, and then transferred into a high-index (e.g. silicon) waveguide with an inverse taper. The two-stage design allows to reduce the coupler length multiple times in comparison with pure inverse taper-based couplers of similar efficiency. The magnitude of length reduction increases with the refractive index of the low-index waveguide and the fiber mode size.

© 2010 OSA

OCIS Codes
(130.0130) Integrated optics : Integrated optics
(130.3120) Integrated optics : Integrated optics devices

ToC Category:
Integrated Optics

Original Manuscript: April 21, 2010
Revised Manuscript: June 28, 2010
Manuscript Accepted: July 1, 2010
Published: July 12, 2010

Anatol Khilo, Miloš A. Popović, Mohammad Araghchini, and Franz X. Kärtner, "Efficient planar fiber-to-chip coupler based on two-stage adiabatic evolution," Opt. Express 18, 15790-15806 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Orobtchouk, “On Chip Optical Waveguide Interconnect: the Problem of the In/Out Coupling,” in Optical Interconnects: the Silicon Approach, L. Pavesi, G. Guillot, eds. (Springer, 2006).
  2. Y. Shani, C. H. Henry, R. C. Kistler, K. J. Orlowsky, and D. A. Ackerman, “Efficient coupling of a semiconductor laser to an optical fiber by means of a tapered waveguide on silicon,” Appl. Phys. Lett. 55(23), 2389–2391 (1989). [CrossRef]
  3. T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3um square Si wire waveguides to singlemode fibres,” Electron. Lett. 38(25), 1669–1670 (2002). [CrossRef]
  4. T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, M. Jun-ichi Takahashi, T. Takahashi, E. Shoji, S. Tamechika, Itabashi, and H. Morita, “Microphotonics Devices Based on Silicon Microfabrication Technology,” IEEE J. Sel. Top. Quantum Electron. 11(1), 232–240 (2005). [CrossRef]
  5. S. McNab, N. Moll, and Y. Vlasov, “Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides,” Opt. Express 11(22), 2927–2939 (2003), http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-22-2927 . [CrossRef] [PubMed]
  6. V. R. Almeida, R. R. Panepucci, and M. Lipson, “Nanotaper for compact mode conversion,” Opt. Lett. 28(15), 1302–1304 (2003). [CrossRef] [PubMed]
  7. G. Roelkens, P. Dumon, W. Bogaerts, D. Van Thourhout, and R. Baets, “Efficient silicon-on-insulator fiber coupler fabricated using 248-nm-deep UV lithography,” IEEE Photon. Technol. Lett. 17(12), 2613–2615 (2005). [CrossRef]
  8. K. K. Lee, D. R. Lim, D. Pan, C. Hoepfner, W.-Y. Oh, K. Wada, L. C. Kimerling, K. P. Yap, and M. T. Doan, “Mode transformer for miniaturized optical circuits,” Opt. Lett. 30(5), 498–500 (2005). [CrossRef] [PubMed]
  9. D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002). [CrossRef]
  10. D. Taillaert, P. Bienstman, and R. Baets, “Compact efficient broadband grating coupler for silicon-on-insulator waveguides,” Opt. Lett. 29(23), 2749–2751 (2004). [CrossRef] [PubMed]
  11. B. Wang, J. Jiang, D. M. Chambers, J. Cai, and G. P. Nordin, “Stratified waveguide grating coupler for normal fiber incidence,” Opt. Lett. 30(8), 845–847 (2005). [CrossRef] [PubMed]
  12. F. Van Laere, G. Roelkens, M. Ayre, J. Schrauwen, D. Taillaert, D. Van Thourhout, T. F. Krauss, and R. Baets, “Compact and Highly Efficient Grating Couplers Between Optical Fiber and Nanophotonic Waveguides,” J. Lightwave Technol. 25(1), 151–156 (2007). [CrossRef]
  13. M. Fan, M. Popović, and F. X. Kärtner, “High Directivity, Vertical Fiber-to-Chip Coupler with Anisotropically Radiating Grating Teeth,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science, Technical Digest (CD) (Optical Society of America, 2007), paper CTuDD3.
  14. I. E. Day, I. Evans, A. Knights, F. Hopper, S. Roberts, J. Johnston, S. Day, J. Luff, H. K. Tsang, and M. Asghari, “Tapered Silicon Waveguides for Low Insertion Loss Highly-Efficient High-Speed Electronic Variable Optical Attenuators,” in Optical Fiber Communication Conference, Technical Digest (CD) (Optical Society of America, 2003), paper TuM5.
  15. R. J. Bozeat, S. Day, F. Hopper, F. P. Payne, S. W. Roberts, and M. Asghari, “Silicon Based Waveguides,” in Silicon Photonics, L. Pavesi, D. J. Lockwood, eds. (Springer, 2004).
  16. T. Aalto, K. Solehmainen, M. Harjanne, M. Kapulainen, and P. Heimala, “Low-loss converters between optical silicon waveguides of different sizes and types,” IEEE Photon. Technol. Lett. 18(5), 709–711 (2006). [CrossRef]
  17. J. K. Doylend and A. P. Knights, “Design and Simulation of an Integrated Fiber-to-Chip Coupler for Silicon-on-Insulator Waveguides,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1363–1370 (2006). [CrossRef]
  18. A. Barkai, A. Liu, D. Kim, R. Cohen, N. Elek, H. Chang, B. H. Malik, R. Gabay, R. Jones, M. Paniccia, and N. Izhaky, “Double-Stage Taper for Coupling Between SOI Waveguides and Single-Mode Fiber,” J. Lightwave Technol. 26(24), 3860–3865 (2008). [CrossRef]
  19. D. Dai, S. He, and H. Tsang, “Bilevel Mode Converter Between a Silicon Nanowire Waveguide and a Larger Waveguide,” J. Lightwave Technol. 24(6), 2428–2433 (2006). [CrossRef]
  20. K. Shiraishi, H. Yoda, A. Ohshima, H. Ikedo, and C. S. Tsai, “A silicon-based spot-size converter between single-mode fibers and Si-wire waveguides using cascaded tapers,” Appl. Phys. Lett. 91(14), 141120 (2007). [CrossRef]
  21. A. Sure, T. Dillon, J. Murakowski, C. Lin, D. Pustai, and D. Prather, “Fabrication and characterization of three-dimensional silicon tapers,” Opt. Express 11(26), 3555–3561 (2003), http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-26-3555 . [CrossRef] [PubMed]
  22. M. Fritze, J. Knecht, C. Bozler, C. Keast, J. Fijol, S. Jacobson, P. Keating, J. LeBlanc, E. Fike, B. Kessler, M. Frish, and C. Manolatou, “Fabrication of three-dimensional mode converters for silicon-based integrated optics,” J. Vac. Sci. Technol. B 21(6), 2897–2902 (2003). [CrossRef]
  23. C. Manolatou, and H. A. Haus, Passive components for dense optical integration (Kluwer Academic Publishers, 2001), chap. 6.
  24. V. Nguyen, T. Montalbo, C. Manolatou, A. Agarwal, C. Hong, J. Yasaitis, L. C. Kimerling, and J. Michel, “Silicon-based highly-efficient fiber-to-waveguide coupler for high index contrast systems,” Appl. Phys. Lett. 88(8), 081112 (2006). [CrossRef]
  25. R. Sun, V. Nguyen, A. Agarwal, C. Hong, J. Yasaitis, L. Kimerling, and J. Michel, “High performance asymmetric graded index coupler with integrated lens for high index waveguides,” Appl. Phys. Lett. 90(20), 201116 (2007). [CrossRef]
  26. A. Khilo, M. Popović, and F. X. Kärtner, “Efficient Planar Fiber-to-Chip Coupler based on Two-Stage Adiabatic Evolution,” presented at ICONO/LAT Conference, Minsk, Belarus, 2007, paper IO2/VIII-1.
  27. A. Khilo, and F. X. Kärtner, “Efficient Planar Single-Mode Fiber-to-Chip Coupler based on Two-Stage Adiabatic Evolution,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science, Technical Digest (CD) (Optical Society of America, 2010), paper JThE30.
  28. Q. Fang, T.-Y. Liow, J. F. Song, C. W. Tan, M. B. Yu, G. Q. Lo, and D.-L. Kwong, “Suspended optical fiber-to-waveguide mode size converter for silicon photonics,” Opt. Express 18(8), 7763–7769 (2010), http://www.opticsinfobase.org/abstract.cfm?URI=oe-18-8-7763 . [CrossRef] [PubMed]
  29. M. Qi, M. R. Watts, T. Barwicz, L. Socci, P. Rakich, E. P. Ippen, and H. I. Smith, “Fabrication of Two-Layer Microphotonic Structures without Planarization,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science, Technical Digest (CD) (Optical Society of America, 2005), paper CWD5.
  30. T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007). [CrossRef]
  31. M. A. Popović, T. Barwicz, E. P. Ippen, and F. X. Kärtner, “Global design rules for silicon microphotonic waveguides: sensitivity, polarization and resonance tunability,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science, Technical Digest (CD) (Optical Society of America, 2006), paper CTuCC1.
  32. FIMMWAVE/FIMMPROP by Photon Design, http://www.photond.com .
  33. C. W. Holzwarth, J. S. Orcutt, H. Li, M. A. Popović, V. Stojanović, J. L. Hoyt, R. J. Ram, and H. I. Smith, “Localized Substrate Removal Technique Enabling Strong-Confinement Microphotonics in Bulk Si CMOS Processes,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science, Technical Digest (CD) (Optical Society of America, 2008), paper CThKK5.
  34. S. Selvaraja, P. Jaenen, W. Bogaerts, D. VanThourhout, P. Dumon, and R. Baets, “Fabrication of Photonic Wire and Crystal Circuits in Silicon-on-Insulator Using 193-nm Optical Lithography,” J. Lightwave Technol. 27(18), 4076–4083 (2009). [CrossRef]
  35. T. Barwicz, M. A. Popović, M. R. Watts, P. T. Rakich, E. P. Ippen, and H. I. Smith, “Fabrication of Add–Drop Filters Based on Frequency-Matched Microring Resonators,” J. Lightwave Technol. 24(5), 2207–2218 (2006). [CrossRef]
  36. T. Barwicz and H. A. Haus, “Three-Dimensional Analysis of Scattering Losses Due to Sidewall Roughness,” J. Lightwave Technol. 23(9), 2719–2732 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited