OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 15 — Jul. 19, 2010
  • pp: 15807–15819

Improving the lateral resolution of a multi-sensor profile measurement method by non-equidistant sensor spacing

Axel Wiegmann, Michael Schulz, and Clemens Elster  »View Author Affiliations

Optics Express, Vol. 18, Issue 15, pp. 15807-15819 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (3183 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a method to enhance the achievable lateral resolution of a multi-sensor scanning profile measurement method. The relationship between the profile measurement method considered and established shearing techniques is illustrated. Simulation and measurement results show that non-equidistant sensor spacing can improve the lateral resolution significantly.

© 2010 OSA

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.3940) Instrumentation, measurement, and metrology : Metrology
(120.6650) Instrumentation, measurement, and metrology : Surface measurements, figure
(100.3008) Image processing : Image recognition, algorithms and filters

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: April 7, 2010
Revised Manuscript: June 9, 2010
Manuscript Accepted: July 5, 2010
Published: July 12, 2010

Axel Wiegmann, Michael Schulz, and Clemens Elster, "Improving the lateral resolution of a multi-sensor profile measurement method by non-equidistant sensor spacing," Opt. Express 18, 15807-15819 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Tanaka and H. Sato, “Extensive analysis and development of straightness measurement by sequential-two-points method,” Trans. ASME J. Eng. Ind 108, 167–182 (1986). [CrossRef]
  2. W. Gao, and S. Kiyono, “On-Machine Profile Measurement of Machined Surface using the Combined Three-Point Method,” JSME Int. J. Ser. C 40 (2), 253–259 (1997). http://ci.nii.ac.jp/naid/110004164205/en/ .
  3. W. Gao, J. Yokoyama, H. Kojima, and S. Kiyono, “Precision measurement of cylinder straightness using a scanning multi-probe system,” Precis. Eng. 26, 279–288 (2002).
  4. I. Weingärtner and C. Elster, “System of four distance sensors for high-accuracy measurement of topography,” Precis. Eng. 28(2), 164–170 (2004). [CrossRef]
  5. C. Elster, I. Weingärtner, and M. Schulz, “Coupled distance sensor systems for high-accuracy topography measurement: Accounting for scanning stage and systematic sensor errors,” Precis. Eng. 30(1), 32–38 (2006). [CrossRef]
  6. H. Mimura, H. Yumoto, S. Matsuyama, K. Yamamura, Y. Sano, K. Ueno, K. Endo, Y. Mori, M. Yabashi, K. Tamasaku, Y. Nishino, T. Ishikawa, and K. Yamauchi, “Relative angle determinable stitching interferometry for hard x-ray reflective optics,” Rev. Sci. Instrum. 76(4), 045102 (2005), doi:. [CrossRef]
  7. H. Bremer, F. Schmahling, C. Elster, S. Krey, A. Ruprecht, M. Schulz, M. Stavridis, and A. Wiegmann, “Simple methods for alignment of line distance sensor arrays,” Proc. SPIE 7718, 77181M (2010), doi:. [CrossRef]
  8. J. Flügge, R. Köning, and C. Weichert, “W. Häßler-Grohne, R. D. Geckeler, A. Wiegmann, M. Schulz, C. Elster and H. Bosse, “Development of a 1.5D reference comparator for position and straightness metrology on photomasks,” Proc. SPIE 7122, 71222Y (2008), doi:, http://link.aip.org/link/?PSI/7122/71222Y/1 . [CrossRef]
  9. W. H. Press, P. B. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes in C: The Art of Scientific Computing, (Cambridge University Press, 1992).
  10. I. Lira, Evaluating the Measurement Uncertainty, (Taylor & Francis Group, 2002).
  11. D. Malacara, M. Servín, and Z. Malacara, Interferogram analysis for optical testing, CRC Press (1998), Chapt. 1.6.4.
  12. T. Nomura, S. Okuda, K. Kamiya, H. Tashiro, and K. Yoshikawa, “Improved Saunders method for the analysis of lateral shearing interferograms,” Appl. Opt. 41(10), 1954–1961 (2002). [CrossRef] [PubMed]
  13. C. Elster and I. Weingärtner, “Solution to the shearing problem,” Appl. Opt. 38(23), 5024–5031 (1999). [CrossRef]
  14. C. Elster, “Recovering wavefronts from difference measurements in lateral shearing interferometry,” J. Comput. Appl. Math. 110(1), 177–180 (1999). [CrossRef]
  15. A. Wiegmann, M. Schulz, and C. Elster, “Suppression of aliasing in multi-sensor scanning absolute profile measurement,” Opt. Express 17(13), 11098–11106 (2009), http://www.opticsinfobase.org/abstract.cfm?URI=oe-17-13-11098 . [CrossRef] [PubMed]
  16. B. Doerband and J. Hetzler, “Characterizing lateral resolution of interferometers: the Height Transfer Function (HTF),” Proc. SPIE 5878, 587806 (2005). [CrossRef]
  17. R. Krueger-Sehm, P. Bakucz, L. Jung, and H. Wilhelms, “Chirp-Kalibriernormale fuer Obeflaechenmessgeraete,” Tech. Mess. 74, 572–576 (2007).
  18. C. Weichert, M. Stavridis, M. Walzel, C. Elster, A. Wiegmann, M. Schulz, R. Köning, J. Flügge, and R. Tutsch, “A model based approach to reference-free straightness measurement at the Nanometer Comparator,” Proc. SPIE 7390, 73900O (2009), doi:. [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited