OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 15 — Jul. 19, 2010
  • pp: 15853–15858

Determination of the time origin by the maximum entropy method in time-domain terahertz emission spectroscopy

Takeya Unuma, Yusuke Ino, Makoto Kuwata-Gonokami, Erik M. Vartiainen, Kai-Erik Peiponen, and Kazuhiko Hirakawa  »View Author Affiliations


Optics Express, Vol. 18, Issue 15, pp. 15853-15858 (2010)
http://dx.doi.org/10.1364/OE.18.015853


View Full Text Article

Enhanced HTML    Acrobat PDF (1006 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have developed a scheme for determining the time origin by the maximum entropy method (MEM) in time-domain terahertz (THz) emission spectroscopy. By applying the MEM to trial damped sinusoidal waveforms, we confirmed that the MEM gives true phase shifts across the resonance features and that its inherent uncertainty in determining the time origin is ±15 fs for 100-fs-class excitation/sampling optical pulses. Furthermore, when the MEM was applied to a THz waveform recorded experimentally with a finite sampling interval for the Bloch oscillation in a semiconductor superlattice, a misplacement of the time origin was indeed detected with an accuracy limited by the worse of the MEM inherent uncertainty and the sampling interval.

© 2010 OSA

OCIS Codes
(000.3860) General : Mathematical methods in physics
(300.2140) Spectroscopy : Emission
(300.6495) Spectroscopy : Spectroscopy, teraherz

ToC Category:
Spectroscopy

History
Original Manuscript: April 23, 2010
Revised Manuscript: June 7, 2010
Manuscript Accepted: June 7, 2010
Published: July 12, 2010

Citation
Takeya Unuma, Yusuke Ino, Makoto Kuwata-Gonokami, Erik M. Vartiainen, Kai-Erik Peiponen, and Kazuhiko Hirakawa, "Determination of the time origin by 
the maximum entropy method in 
time-domain terahertz emission spectroscopy," Opt. Express 18, 15853-15858 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-15-15853


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Q. Wu, M. Litz, and X.-C. Zhang, “Broadband detection capability of ZnTe electro-optic field detectors,” Appl. Phys. Lett. 68(21), 2924 (1996). [CrossRef]
  2. A. Leitenstorfer, S. Hunsche, J. Shah, M. C. Nuss, and W. H. Knox, “Detectors and sources for ultrabroadband electro-optic sampling: Experiment and theory,” Appl. Phys. Lett. 74(11), 1516 (1999). [CrossRef]
  3. A. Leitenstorfer, S. Hunsche, J. Shah, M. C. Nuss, and W. H. Knox, “Femtosecond charge transport in polar semiconductors,” Phys. Rev. Lett. 82 (25), 5140 (1999); “Femtosecond high-field transport in compound semiconductors,” Phys. Rev. B 61(24), 16642–16652 (2000).
  4. M. Abe, S. Madhavi, Y. Shimada, Y. Otsuka, K. Hirakawa, and K. Tomizawa, “Transient carrier velocities in bulk GaAs: Quantitative comparison between terahertz data and ensemble Monte Carlo calculations,” Appl. Phys. Lett. 81(4), 679 (2002). [CrossRef]
  5. E. Hendry, M. Koeberg, J. M. Schins, L. D. A. Siebbeles, and M. Bonn, “Ultrafast charge generation in a semiconducting polymer studied with THz emission spectroscopy,” Phys. Rev. B 70(3), 033202 (2004). [CrossRef]
  6. N. Sekine and K. Hirakawa, “Dispersive terahertz gain of a nonclassical oscillator: Bloch oscillation in semiconductor superlattices,” Phys. Rev. Lett. 94(5), 057408 (2005). [CrossRef] [PubMed]
  7. E. Beaurepaire, G. M. Turner, S. M. Harrel, M. C. Beard, J.-Y. Bigot, and C. A. Schmuttenmaer, “Coherent terahertz emission from ferromagnetic films excited by femtosecond laser pulses,” Appl. Phys. Lett. 84(18), 3465 (2004). [CrossRef]
  8. Y. Shimada, K. Hirakawa, M. Odnoblioudov, and K. A. Chao, “Terahertz conductivity and possible Bloch gain in semiconductor superlattices,” Phys. Rev. Lett. 90(4), 046806 (2003). [CrossRef] [PubMed]
  9. S. Haykin, Nonlinear Methods of Spectral Analysis (Springer, Berlin, 1983), Chap. 2.
  10. E. M. Vartiainen, K.-E. Peiponen, and T. Asakura, “Phase retrieval in optical spectroscopy: Resolving optical constants from power spectra,” Appl. Spec. 50(10), 1283 (1996). [CrossRef]
  11. K.-E. Peiponen, E. M. Vartiainen, and T. Asakura, Dispersion, Complex Analysis and Optical Spectroscopy (Springer, Heidelberg, 1999), Chap. 5.
  12. E. M. Vartiainen, Y. Ino, R. Shimano, M. Kuwata-Gonokami, Y. P. Svirko, and K.-E. Peiponen, “Numerical phase correction method for terahertz time-domain reflection spectroscopy,” J. Appl. Phys. 96(8), 4171 (2004). [CrossRef]
  13. Y. Ino, B. Héroux, T. Mukaiyama, and M. Kuwata-Gonokami, “Reflection-type pulsed terahertz imaging with a phase retrieval algorithm,” Appl. Phys. Lett. 88(4), 041114 (2006). [CrossRef]
  14. We chose these frequency ranges by considering a tradeoff: the resonance feature is more accurately captured in wider frequency ranges, while the numerical error in solving the Toeplitz matrix equation becomes less in narrower frequency ranges.
  15. T. Unuma, N. Sekine, and K. Hirakawa, “Dephasing of Bloch oscillating electrons in GaAs-based superlattices due to interface roughness scattering,” Appl. Phys. Lett. 89(16), 161913 (2006). [CrossRef]
  16. V. Lucarini, J. J. Saarinen, K.-E. Peiponen, and E. M. Vartiainen, Kramers-Kronig Relations in Optical Materials Research (Springer, Berlin, 2005), Chap. 10.
  17. For example, seeA. Lisauskas, M. M. Dignam, N. V. Demarina, E. Mohler, and H. G. Roskos, “Examining the terahertz signal from a photoexcited biased semiconductor superlattice for evidence of gain,” Appl. Phys. Lett. 93(2), 021122 (2008). [CrossRef]
  18. T. Unuma, Y. Ino, M. Kuwata-Gonokami, G. Bastard, and K. Hirakawa, “Transient Bloch oscillation with the symmetry-governed phase in semiconductor superlattices,” Phys. Rev. B 81(12), 125329 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited