OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 15 — Jul. 19, 2010
  • pp: 15859–15869

Ultrahigh-Q one-dimensional photonic crystal nanocavities with modulated mode-gap barriers on SiO2 claddings and on air claddings

Eiichi Kuramochi, Hideaki Taniyama, Takasumi Tanabe, Kohei Kawasaki, Young-Geun Roh, and Masaya Notomi  »View Author Affiliations


Optics Express, Vol. 18, Issue 15, pp. 15859-15869 (2010)
http://dx.doi.org/10.1364/OE.18.015859


View Full Text Article

Enhanced HTML    Acrobat PDF (1153 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report designs for a silicon-on-insulator (SOI) one-dimensional (1D) photonic crystal (PhC) nanocavity with modulated mode-gap barriers based on the lowest dielectric band. These cavities have an ultrahigh theoretical quality factor (Q) of 107-108 while maintaining a very small modal volume of 0.6-2.0 (λ/n)3, which are the highest Q for any nanocavities with SiO2 under-cladding. We have fabricated these SOI 1D-PhC cavities and confirmed that they exhibited a Q of 3.6×105, which is also the highest measured Q for SOI-type PhC nanocavities. We have also applied the same design to 1D PhC cavities with air claddings, and found that they exhibit a theoretical quality factor higher than 109. The fabricated air-cladding 1D Si PhC cavities have showed a quality factor of 7.2×105, which is close to the highest Q value for 1D PhC cavities.

© 2010 OSA

OCIS Codes
(230.5750) Optical devices : Resonators
(230.5298) Optical devices : Photonic crystals

ToC Category:
Photonic Crystals

History
Original Manuscript: May 18, 2010
Revised Manuscript: June 25, 2010
Manuscript Accepted: June 28, 2010
Published: July 12, 2010

Citation
Eiichi Kuramochi, Hideaki Taniyama, Takasumi Tanabe, Kohei Kawasaki, Young-Geun Roh, and Masaya Notomi, "Ultrahigh-Q one-dimensional photonic crystal nanocavities with modulated mode-gap barriers on SiO2 claddings and on air claddings," Opt. Express 18, 15859-15869 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-15-15859


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. R. Villeneuve, J. S. Foresi, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390(6656), 143–145 (1997). [CrossRef]
  2. D. Peyrade, E. Silberstein, P. Lalanne, A. Talneau, and Y. Chen, “Short Bragg mirrors with adiabatic modal conversion,” Appl. Phys. Lett. 81(5), 829–831 (2002). [CrossRef]
  3. P. Velha, E. Picard, T. Charvolin, E. Hadji, J. C. Rodier, P. Lalanne, and D. Peyrade, “Ultra-High Q/V Fabry-Perot microcavity on SOI substrate,” Opt. Express 15(24), 16090–16096 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-24-16090 . [CrossRef] [PubMed]
  4. A. R. Zain, N. P. Johnson, M. Sorel, and R. M. De La Rue, “Ultra high quality factor one dimensional photonic crystal/photonic wire micro-cavities in silicon-on-insulator (SOI),” Opt. Express 16(16), 12084–12089 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-16-12084 . [CrossRef] [PubMed]
  5. M. Notomi, A. Shinya, S. Mitsugi, E. Kuramochi, and H.-Y. Ryu, “Waveguides, resonators and their coupled elements in photonic crystal slabs,” Opt. Express 12(8), 1551–1561 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-8-1551 . [CrossRef] [PubMed]
  6. Y. Akahane, T. Asano, B. S. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express 13(4), 1202–1214 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-4-1202 . [CrossRef] [PubMed]
  7. B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005). [CrossRef]
  8. E. Kuramochi, M. Notomi, M. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88(4), 041112 (2006). [CrossRef]
  9. M. Notomi, E. Kuramochi, and H. Taniyama, “Ultrahigh-Q nanocavity with 1D photonic gap,” Opt. Express 16(15), 11095–11102 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-15-11095 . [CrossRef] [PubMed]
  10. P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94(12), 121106 (2009). [CrossRef]
  11. M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459(7246), 550–555 (2009). [CrossRef] [PubMed]
  12. L.-D. Haret, T. Tanabe, E. Kuramochi, and M. Notomi, “Extremely low power optical bistability in silicon demonstrated using 1D photonic crystal nanocavity,” Opt. Express 17(23), 21108–21117 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-23-21108 . [CrossRef] [PubMed]
  13. P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar, “Coupled photonic crystal nanobeam cavities,” Appl. Phys. Lett. 95(3), 031102 (2009). [CrossRef]
  14. M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature 462(7269), 78–82 (2009). [CrossRef] [PubMed]
  15. C. A. Barrious, “Ultrasensitive nanomechanical photonic sensor based on horizontal slot-waveguide resonator,” IEEE Photon. Technol. Lett. 18(22), 2419–2421 (2006). [CrossRef]
  16. C. Lee and J. Thillaigovindan, “Optical nanomechanical sensor using a silicon photonic crystal cantilever embedded with a nanocavity resonator,” Appl. Opt. 48(10), 1797–1803 (2009), http://www.opticsinfobase.org/abstract.cfm?URI=ao-48-10-1797 . [CrossRef] [PubMed]
  17. S. Kita, K. Nozaki, and T. Baba, “Refractive index sensing utilizing a cw photonic crystal nanolaser and its array configuration,” Opt. Express 16(11), 8174–8180 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-11-8174 . [CrossRef] [PubMed]
  18. T.-W. Lu, Y.-H. Hsiao, W.-D. Ho, and P.-T. Lee, “Photonic crystal heteroslab-edge microcavity with high quality factor surface mode for index sensing,” Appl. Phys. Lett. 94(14), 141110 (2009). [CrossRef]
  19. Y. A. Vlasov, N. Moll, S. J. McNab, T.-W. Lu, Y.-H. Hsiao, W.-D. Ho, and P.-T. Lee, “Mode mixing in asymmetric double-trench photonic crystal waveguides,” J. Appl. Phys. 95(9), 4538–4544 (2004). [CrossRef]
  20. Y. Tanaka, T. Asano, R. Hatsuta, and S. Noda, “Investigation of point-defect cavity formed in two-dimensional photonic crystal slab with one-sided dielectric cladding,” Appl. Phys. Lett. 88(1), 011112 (2006). [CrossRef]
  21. E. Kuramochi, H. Taniyama, T. Tanabe, A. Shinya, and M. Notomi, “Ultrahigh-Q two-dimensional photonic crystal slab nanocavities in very thin barriers,” Appl. Phys. Lett. 93(11), 111112 (2008). [CrossRef]
  22. M. Notomi and H. Taniyama, “On-demand ultrahigh-Q cavity formation and photon pinning via dynamic waveguide tuning,” Opt. Express 16(23), 18657–18666 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-23-18657 . [CrossRef]
  23. E. Kuramochi, T. Tanabe, H. Taniyama, K. Kawasaki, and M. Notomi, “Ultrahigh-Q silicon-on-insulator one dimensional mode-gap nanocavity,” in The Conference on Lasers and Electro-Optics and The Quantum Electronics and Laser Science Conference (CLEO/QELS:2010), Optical Society of America, Washington, DC, USA, 2010, paper CWB2.
  24. Q. Quan, P. B. Deotare, and M. Lončar, “Deterministic design of ultrahigh Q and small mode volume photonic crystal nanobeam cavity,” in The Conference on Lasers and Electro-Optics and The Quantum Electronics and Laser Science Conference (CLEO/QELS:2010), Optical Society of America, Washington, DC, USA, 2010, paper CWB5.
  25. Q. Quan, P. B. Deotare, and M. Lončar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96(20), 203102 (2010). [CrossRef]
  26. T. Tanabe, M. Notomi, E. Kuramochi, and H. Taniyama, “Large pulse delay and small group velocity achieved using ultrahigh-Q photonic crystal nanocavities,” Opt. Express 15(12), 7826–7839 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-12-7826 . [CrossRef] [PubMed]
  27. M. Notomi, T. Tanabe, A. Shinya, E. Kuramochi, and H. Taniyama, “On-Chip All-Optical Switching and Memory by Silicon Photonic Crystal Nanocavities,” Adv. Opt. Technol. (2008), 568936 (2008).
  28. S. Mandal and D. Erickson, “Nanoscale optofluidic sensor arrays,” Opt. Express 16(3), 1623–1631 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-3-1623 . [CrossRef] [PubMed]
  29. C. E. Png and S. T. Lim, “Silicon optical nanocavities for multiple sensing,” J. Lightwave Technol. 26(11), 1524–1531 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited