OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 15 — Jul. 19, 2010
  • pp: 15870–15875

Simultaneous multi-channel CMW-band and MMW-band UWB monocycle pulse generation using FWM effect in a highly nonlinear photonic crystal fiber

Fangzheng Zhang, Jian Wu, Songnian Fu, Kun Xu, Yan Li, Xiaobin Hong, Ping Shum, and Jintong Lin  »View Author Affiliations


Optics Express, Vol. 18, Issue 15, pp. 15870-15875 (2010)
http://dx.doi.org/10.1364/OE.18.015870


View Full Text Article

Enhanced HTML    Acrobat PDF (1197 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose and experimentally demonstrate a scheme to simultaneously realize multi-channel centimeter wave (CMW) band and millimeter wave (MMW) band ultra-wideband (UWB) monocycle pulse generation using four wave mixing (FWM) effect in a highly nonlinear photonic crystal fiber (HNL-PCF). Two lightwaves carrying polarity-reversed optical Gaussian pulses with appropriate time delay and another lightwave carrying a 20 GHz clock signal are launched into the HNL-PCF together. By filtering out the FWM idlers, two CMW-band UWB monocycle signals and two MMW-band UWB monocycle signals at 20 GHz are obtained simultaneously. Experimental measurements of the generated UWB monocycle pulses at individual wavelength, which comply with the FCC regulations, verify the feasibility and flexibility of proposed scheme for use in practical UWB communication systems.

© 2010 OSA

OCIS Codes
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(060.5625) Fiber optics and optical communications : Radio frequency photonics

ToC Category:
Nonlinear Optics

History
Original Manuscript: May 21, 2010
Revised Manuscript: June 30, 2010
Manuscript Accepted: July 2, 2010
Published: July 12, 2010

Citation
Fangzheng Zhang, Jian Wu, Songnian Fu, Kun Xu, Yan Li, Xiaobin Hong, Ping Shum, and Jintong Lin, "Simultaneous multi-channel CMW-band and MMW-band UWB monocycle pulse generation using FWM effect in a highly nonlinear photonic crystal fiber," Opt. Express 18, 15870-15875 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-15-15870


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Porcine and W. Hirt, “Ultra-wideband radio technology: potential and challenges ahead,” IEEE Commun. Mag. 41(7), 66–74 (2003). [CrossRef]
  2. M. Ran, B. I. Lembrikov, and Y. Ben Ezra, “Ultra-wideband Radio-Over-Optical fiber concepts, technologies and applications,” IEEE Photon. Journal 2(1), 36–48 (2010). [CrossRef]
  3. X. Chen and S. Kiaei, “Monocycle shapes for ultra wideband system,” IEEE Int. Symp. Circuits Syst., vol. 1, pp. 597–600. Scottsdale, USA. May, 2002.
  4. T. B. Gibbon, X. Yu, R. Gamatham, N. G. Gonzalez, R. Rodes, J. B. Jensen, A. Caballero, and I. T. Monroy, “3.125 Gb/s impulse radio ultra-wideband photonic generation and distribution over a 50 km fiber with wireless transmission,” IEEE Microw. Wirel. Compon. Lett. 20(2), 127–129 (2010). [CrossRef]
  5. J. B. Jensen, R. Rodes, A. Caballero, X. Yu, T. B. Gibbon, and I. T. Monroy, “4 Gbps impulse radio (IR) ultra-wideband (UWB) transmission over 100 meters multi mode fiber with 4 meters wireless transmission,” Opt. Express 17(19), 16898–16903 (2009). [CrossRef] [PubMed]
  6. S. W. Wang, H. W. Chen, M. Xin, M. H. Chen, and S. Z. Xie, “Optical ultra-wide-band pulse bipolar and shape modulation based on a symmetric PM-IM conversion architecture,” Opt. Lett. 34(20), 3092–3094 (2009). [CrossRef] [PubMed]
  7. F. Zeng and J. P. Yao, “Ultra-wideband impulse radio signal generation using a high speed electro-optic phase modulator and a fiber-Bragg grating based frequency discriminator,” IEEE Photon. Technol. Lett. 18(19), 2062–2064 (2006). [CrossRef]
  8. Q. Wang and J. P. Yao, “An electrically switchable optical ultra-wideband and pulse generator,” IEEE J. Lightwave Technol. 25(11), 3626–3633 (2007). [CrossRef]
  9. J. Q. Li, K. Xu, S. N. Fu, M. Tang, P. Shum, J. Wu, and J. T. Lin, “Photonic polarity-switchable ultra-wideband pulse generation using a tunable Sagnac interferometer comb filter,” IEEE Photon. Technol. Lett. 20(15), 1320–1322 (2008). [CrossRef]
  10. Q. Wang, F. Zeng, S. Blais, and J. Yao, “Optical ultrawideband monocycle pulse generation based on cross-gain modulation in a semiconductor optical amplifier,” Opt. Lett. 31(21), 3083–3085 (2006). [CrossRef] [PubMed]
  11. J. Q. Li, S. N. Fu, K. Xu, J. Wu, J. T. Lin, M. Tang, and P. Shum, “Photonic ultrawideband monocycle pulse generation using a single electro-optic modulator,” Opt. Lett. 33(3), 288–290 (2008). [CrossRef] [PubMed]
  12. Z. Hu, J. Sun, J. Shao, and X. Zhang, “Filter-free optically switchable and tunable ultra-wideband monocycle generation based on wavelength conversion and fiber dispersion,” IEEE Photon. Technol. Lett. 22(1), 42–44 (2010). [CrossRef]
  13. S. N. Fu, W. D. Zhong, Y. Jing, and P. Shum, “Photonic monocycle pulse frequency up-conversion for ultra-wideband-over-fiber applications,” IEEE Photon. Technol. Lett. 20(12), 1006–1008 (2008). [CrossRef]
  14. J. Li, Y. Liang, and K. K. Wong, “Millimeter-wave UWB signal generation via frequency up-conversion using fiber optical parametric amplifier,” IEEE Photon. Technol. Lett. 21(17), 1172–1174 (2009). [CrossRef]
  15. C. J. McKinstrie, S. Radic, and A. R. Chraplyvy, “Parametric amplifiers driven by two pump waves,” IEEE J. Sel. Top. Quantum Electron. 8(3), 538–547 (2002). [CrossRef]
  16. K. Inoue, “Four-wave missing in an optical fiber in the zero-dispersion wavelength region,” IEEE J. Lightwave Technol. 10(11), 1553–1561 (1992). [CrossRef]
  17. M. Takahashi, K. Mukasa, and T. Yagi, “Full C-L band tunable wavelength conversion by zero dispersion and zero dispersion slope HNLF,” in Proc. ECOC(2009), Paper P1.08.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited