OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 15 — Jul. 19, 2010
  • pp: 15876–15886

Surface integral equation formulation for the analysis of left-handed metamaterials

J. Rivero, J. M. Taboada, L. Landesa, F. Obelleiro, and I. García-Tuñón  »View Author Affiliations

Optics Express, Vol. 18, Issue 15, pp. 15876-15886 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1045 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A surface integral equation (SIE) formulation is applied to the analysis of electromagnetic problems involving three-dimensional (3D) piecewise homogenized left-handed metamaterials (LHM). The resulting integral equations are discretized by the well-known method of moments (MoM) and solved via an iterative process. The unknowns are defined only on the interfaces between different media, avoiding the discretization of volumes and surrounding space, which entails a drastic reduction in the number of unknowns arising in the numerical discretization of the equations. Besides, the SIE-MoM formulation inherently includes the radiation condition at infinity, so it is not necessary to artificially include termination absorbing boundary conditions. Some 3D numerical examples are presented to confirm the validity and versatility of this approach on dealing with LHM, also providing some intuitive verifications of the singular properties of these amazing materials.

© 2010 OSA

OCIS Codes
(260.2110) Physical optics : Electromagnetic optics
(350.3618) Other areas of optics : Left-handed materials
(160.3918) Materials : Metamaterials

ToC Category:
Physical Optics

Original Manuscript: May 25, 2010
Revised Manuscript: June 21, 2010
Manuscript Accepted: June 24, 2010
Published: July 12, 2010

J. Rivero, J. M. Taboada, L. Landesa, F. Obelleiro, and I. García-Tuñón, "Surface integral equation formulation for the analysis of left-handed metamaterials," Opt. Express 18, 15876-15886 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Soviet Physics USPEKI 10(4), 509–514 (1968). [CrossRef]
  2. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001). [CrossRef] [PubMed]
  3. N. Engheta and R. W. Ziolkowski, “A positive future for double-negative metamaterials,” IEEE Trans. Microw. Theory Tech. 53(4), 1535–1556 (2005). [CrossRef]
  4. C. D. Moss, T. M. Grzegorczyk, Y. Zhang, and J. A. Kong, “Numerical studies of left-handed materials,” Prog. Electromagn. Res. 35, 315–334 (2002). [CrossRef]
  5. P. F. Loschialpo, D. W. Forester, D. L. Smith, F. J. Rachford, and C. Monzon, “Optical properties of an ideal homogeneous causal left-handed material slab,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(3), 036605 (2004). [CrossRef] [PubMed]
  6. Z. G. Dong, S. N. Zhu, H. Liu, J. Zhu, and W. Cao, “Numerical simulations of negative-index refraction in wedge-shaped metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1), 016607 (2005). [CrossRef] [PubMed]
  7. R. S. Schechtera and S. T. Chun, “Large finite-difference time domain simulations of a left-handed metamaterial lens with wires and resonators,” Appl. Phys. Lett. 91(15), 154102 (2007). [CrossRef]
  8. Ö. Ergül, T. Malas, C. Yavuz, A. Ünal, and L. Gürel, “Computational Analysis of complicated metamaterial structures using MLFMA and nested preconditioners,” in Proceedings of European Conference on Antennas and Propagation (EuCAP), Edinburgh, UK, 11–16 Nov. 2007.
  9. F. Olyslager, L. Meert, and K. Cools, “The fast multipole method in electromagnetics applied to the simulation of metamateriales,” J. Comput. Appl. Math. 215(2), 528–537 (2008). [CrossRef]
  10. P. Yla-Oijala, Ö. Ergül, L. Gürel, and M. Taskinen, “Efficient surface integral equation methods for the analysis of complex metamaterial structures,” in Proceedings of European Conference on Antennas and Propagation (EuCAP), Berlin, Germany, 23–27 Mar. 2009.
  11. L. Gürel, Ö. Ergül, A. Ünal, and T. Malas, “Fast and accurate analysis of metamaterial structures using the multilevel fast multipole algorithm,” Prog. Electromagn. Res. 95, 179–198 (2009). [CrossRef]
  12. M. Lapine and S. Tretyakov, “Contemporary notes on metamaterials,” IET Microw. Ant. Propag. 1, 3–11 (2007). [CrossRef]
  13. D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002). [CrossRef]
  14. X. Chen, T. M. Grzegorczyk, B. I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(1), 016608 (2004). [CrossRef] [PubMed]
  15. D. R. Smith and J. B. Pendry, “Homogenization of metamaterials by field averaging,” J. Opt. Soc. Am. B 23(3), 391–403 (2006). [CrossRef]
  16. C. Caloz, C. C. Chang, and T. Itoh, “Full-wave verification of the fundamental properties of left-handed materials in waveguide configurations,” J. Appl. Phys. 90(11), 5483 (2001). [CrossRef]
  17. R. W. Ziolkowski and E. Heyman, “Wave propagation in media having negative permittivity and permeability,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 64(5), 056625 (2001). [CrossRef] [PubMed]
  18. R. W. Ziolkowski, “Pulsed and CW Gaussian beam interactions with double negative metamaterial slabs,” Opt. Express 11(7), 662–681 (2003). [CrossRef] [PubMed]
  19. P. F. Loschialpo, D. L. Smith, D. W. Forester, and F. J. Rachford, “Electromagnetic waves focused by a negative-index planar lens,” Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top. 67, 025602 (2003).
  20. C. G. Parazzoli, R. B. Greegor, J. A. Nielsen, M. A. Thompson, K. Li, A. M. Vetter, M. H. Tanielian, and D. C. Vier, “Performance of a negative index of refraction lens,” Appl. Phys. Lett. 84(17), 3232–3234 (2004). [CrossRef]
  21. P. Kolinko and D. R. Smith, “Numerical study of electromagnetic waves interacting with negative index materials,” Opt. Express 11(7), 640–648 (2003). [CrossRef] [PubMed]
  22. B. J. Justice, J. J. Mock, L. Guo, A. Degiron, D. Schurig, and D. R. Smith, “Spatial mapping of the internal and external electromagnetic fields of negative index metamaterials,” Opt. Express 14(19), 8694–8705 (2006). [CrossRef] [PubMed]
  23. R. F. Harrington, Field Computation by Moment Method. (NY: IEEE Press, 1993).
  24. L. Landesa, J. M. Taboada, J. L. Rodriguez, F. Obelleiro, J. M. Bertolo, J. C. Mouriño, and A. Gomez, “Analysis of 0.5 Billion Unknowns Using a Parallel FMM-FFT Solver,” in Proceedings of IEEE Antennas and Propagation Society International Symposium, Charleston, SC, USA, 1–5 Jun. 2009.
  25. J. M. Taboada, L. Landesa, F. Obelleiro, J. L. Rodriguez, J. M. Bertolo, M. G. Araujo, J. C. Mouriño, and A. Gomez, “High scalability FMM-FFT electromagnetic solver for supercomputer systems,” IEEE Ant. Propag. Mag. 51(6), 20–28 (2009). [CrossRef]
  26. M. G. Araújo, J. M. Taboada, F. Obelleiro, J. M. Bértolo, L. Landesa, J. Rivero, and J. L. Rodríguez, “Supercomputer aware approach for the solution of challenging electromagnetic problems,” Prog. Electromagn. Res. 101, 241–256 (2010). [CrossRef]
  27. A. J. Poggio, and E. K. Miller, Computer Techniques for Electromagnetics (Elmsford, NY: Permagon, 1973), Chap. 4.
  28. S. M. Rao and D. R. Wilton, “E-field, H-field, and combined field solution for arbitrarily shaped three-dimensional dielectric bodies,” Electromag. 10(4), 407–421 (1990). [CrossRef]
  29. P. Ylä-Oijala and M. Taskinen, “Application of combined field integral equation for electromagnetic scattering by dielectric and composite objects,” IEEE Trans. Antenn. Propag. 53(3), 1168–1173 (2005). [CrossRef]
  30. P. Ylä-Oijala, M. Taskinen, and S. Järvenpää, “Surface integral equation formulations for solving electromagnetic scattering problems with iterative methods,” Radio Sci. 40(6), RS6002 (2005). [CrossRef]
  31. P. Ylä-Oijala, M. Taskinen, and J. Sarvas, “Surface integral equation method for general integral equation method for general composite metallic and dielectric structures with junctions,” Prog. Electromagn. Res. 52, 81–108 (2005). [CrossRef]
  32. Ö. Ergül and L. Gürel, “Comparison of integral-equation formulations for the fast and accurate solution of scattering problems involving dielectric objects with the multilevel fast multipole algorithm,” IEEE Trans. Antenn. Propag. 57(1), 176–187 (2009). [CrossRef]
  33. S. M. Rao, D. R. Wilton, and A. W. Glisson, “Electromagnetic scattering by surfaces of arbitrary shape,” IEEE Trans. Antenn. Propag. 30(3), 409–418 (1982). [CrossRef]
  34. D. R. Wilton, S. M. Rao, A. W. Glisson, D. H. Schaubert, O. M. Al-Bundak, and C. M. Butler, “Potential integrals for uniform and linear source distributions on polygonal and polyhedral domains,” IEEE Trans. Antenn. Propag. 32(3), 276–281 (1984). [CrossRef]
  35. R. E. Hodges and Y. Rahmat-Samii, “The evaluation of MFIE integrals with the use of vector triangle basis functions,” Microw. Opt. Technol. Lett. 14(1), 9–14 (1997). [CrossRef]
  36. R. D. Graglia, “On the numerical integration of the linear shape functions times the 3-D green’s function or its gradient on a plane triangle,” IEEE Trans. Antenn. Propag. 41(10), 1448–1455 (1993). [CrossRef]
  37. P. Yla-Oijala and M. Taskinen; “Calculation of CFIE impedance matrix elements with RWG and, ” IEEE Trans. Antenn. Propag. 51(8), 1837–1846 (2003). [CrossRef]
  38. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

Supplementary Material

» Media 1: AVI (1743 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited