OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 15 — Jul. 19, 2010
  • pp: 15917–15935

Characterizing accuracy of total hemoglobin recovery using contrast-detail analysis in 3D image-guided near infrared spectroscopy with the boundary element method

Hamid R. Ghadyani, Subhadra Srinivasan, Brian W. Pogue, and Keith D. Paulsen  »View Author Affiliations

Optics Express, Vol. 18, Issue 15, pp. 15917-15935 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (2637 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The quantification of total hemoglobin concentration (HbT) obtained from multi-modality image-guided near infrared spectroscopy (IG-NIRS) was characterized using the boundary element method (BEM) for 3D image reconstruction. Multi-modality IG-NIRS systems use a priori information to guide the reconstruction process. While this has been shown to improve resolution, the effect on quantitative accuracy is unclear. Here, through systematic contrast-detail analysis, the fidelity of IG-NIRS in quantifying HbT was examined using 3D simulations. These simulations show that HbT could be recovered for medium sized (20mm in 100mm total diameter) spherical inclusions with an average error of 15%, for the physiologically relevant situation of 2:1 or higher contrast between background and inclusion. Using partial 3D volume meshes to reduce the ill-posed nature of the image reconstruction, inclusions as small as 14mm could be accurately quantified with less than 15% error, for contrasts of 1.5 or higher. This suggests that 3D IG-NIRS provides quantitatively accurate results for sizes seen early in treatment cycle of patients undergoing neoadjuvant chemotherapy when the tumors are larger than 30mm.

© 2010 Optical Society of America

OCIS Codes
(110.3000) Imaging systems : Image quality assessment
(170.3880) Medical optics and biotechnology : Medical and biological imaging

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: March 22, 2010
Revised Manuscript: May 8, 2010
Manuscript Accepted: July 3, 2010
Published: July 13, 2010

Virtual Issues
Vol. 5, Iss. 12 Virtual Journal for Biomedical Optics

Hamid R. Ghadyani, Subhadra Srinivasan, Brian W. Pogue, and Keith D. Paulsen, "Characterizing accuracy of total hemoglobin recovery using contrast-detail analysis in 3D image-guided near infrared spectroscopy with the boundary element method," Opt. Express 18, 15917-15935 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. Chance, S. Nioka, J. Zhang, E. F. Conant, E. Hwang, S. Briest, S. G. Orel, M. D. Schnall, and B. J. Czerniecki, “Breast cancer detection based on incremental biochemical and physiological properties of breast cancers: a six-year, two-site study," Acad. Radiol. 12, 925-33 (2005). [CrossRef] [PubMed]
  2. B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. L. Osterberg, and K. D. Paulsen, “Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: pilot results in the breast," Radiology 218, 261-6 (2001). [PubMed]
  3. B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. But-ler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy," Neoplasia 2, 26-40 (2000). [CrossRef] [PubMed]
  4. G. Strangman, D. A. Boas, and J. P. Sutton, “Non-invasive neuroimaging using near-infrared light," Biol. Psychiatry 52, 679-693 (2002). [CrossRef] [PubMed]
  5. D. K. Joseph, T. J. Huppert, M. A. Franceschini, and D. A. Boas, “Diffuse optical tomography system to image brain activation with improved spatial resolution and validation with functional magnetic resonance imaging," Appl. Opt. 45, 8142-51 (2006). [CrossRef] [PubMed]
  6. M. J. C. van Gemert, S. L. Jacques, H. Sterenborg, and W. M. Star, “Skin Optics," IEEE Trans. Biomed. Eng. 36, 1146-1154 (1989). [CrossRef] [PubMed]
  7. G. Xu, D. Piao, C. H. Musgrove, C. F. Bunting, and H. Dehghani, “Trans-rectal ultrasound coupled near infrared optical tomography of the prostate: Part I: simulation," Opt. Express 16, 17484-17504 (2008). [CrossRef]
  8. A. H. Hielscher, A. D. Klose, A. K. Scheel, B. Moa-Anderson, M. Backhaus, U. Netz, and J. Beuthan, “Sagittal laser optical tomography for imaging of rheumatoid finger joints," Phys. Med. Biol. 49, 1147-63 (2004). [CrossRef] [PubMed]
  9. Z. Yuan, Q. Zhang, E. S. Sobel, and H. Jiang, “Tomographic x-ray-guided three-dimensional diffuse optical tomography of osteoarthritis in the finger joints," J. Biomed Opt 13, 044-006 (2008).
  10. C. D. Kurth, J. M. Steven, S. C. Nicolson, B. Chance, and M. Delivoria-Papadopoulos, “Kinetics of cerebral deoxygenation during deep hypothermic circulatory arrest in neonates,"Anesthesiology 77, 656-61 (1992). [CrossRef] [PubMed]
  11. D. R. Leff, O. J. Warren, L. C. Enfield, A. Gibson, T. Athanasiou, D. K. Patten, J. C. Hebden, G. Z. Yang, and A. Darzi, “Diffuse optical imaging of the healthy and diseased breast: a systematic review," Breast Cancer Res Treat: Review (2007).
  12. S. Srinivasan, B. W. Pogue, B. Brooksby, S. Jiang, H. Dehghani, C. Kogel, W. A. Wells, S. P. Poplack, and K. D. Paulsen, “Near-infrared characterization of breast tumors in-vivo using spectrally-constrained reconstruction," Technology in Cancer Research and Treatment 4, 513- 526 (2005). [PubMed]
  13. L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, G. M. Danesini, and R. Cubeddu, “Characterization of female breast lesions from multi-wavelength time-resolved optical mammography," Phys Med Biol 50, 2489-2502 (2005). [CrossRef] [PubMed]
  14. X. Intes, S. Djeziri, Z. Ichalalene, N. Mincu, Y. Wang, P. St-Jean, F. Lesage, D. Hall, D. Boas, M. Polyzos, P. Fleiszer, and B. Mesurolle, “Time-Domain Optical Mammography SoftScan: Initial Results," Acad. Radiology 12, 934-947 (2005). [CrossRef]
  15. D. Grosenick, H. Wabnitz, K. T. Moesta, J. Mucke, P. M. Schlag, and H. Rinneberg,”Time-domain scanning optical mammography: II. Optical properties and tissue parameters of 87 carcinomas," Phys Med Biol 50, 2451-2468 (2005). [CrossRef] [PubMed]
  16. R. Choe, S. D. Konecky, A. Corlu, K. Lee, T. Durduran, D. R. Busch, S. Pathak, B. J. Czerniecki, J. Tchou, D. L. Fraker, A. Demichele, B. Chance, S. R. Arridge, M. Schweiger, J. P. Culver, M. D. Schnall, M. E. Putt, M. A. Rosen, and A. G. Yodh, “Differentiation of benign and malignant breast tumors by in-vivo three-dimensional parallel-plate diffuse optical tomography," J. Biomed. Opt. 14, 024,020 (2009). [CrossRef]
  17. S. Jiang, B. W. Pogue, C. M. Carpenter, S. P. Poplack, W. A. Wells, C. A. Kogel, J. A. Forero, L. S. Muffly, G. N. Schwartz, K. D. Paulsen, and P. A. Kaufman, “Evaluation of breast tumor response to neoadjuvant chemotherapy with tomographic diffuse optical spectroscopy: case studies of tumor region-of-interest changes," Radiology 252, 551-60 (2009). [CrossRef] [PubMed]
  18. A. Cerussi, D. Hsiang, N. Shah, R. Mehta, A. Durkin, J. Butler, and B. J. Tromberg, “Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy," Proc. Natl. Acad. Sci. U S A 104, 4014-9 (2007). [CrossRef] [PubMed]
  19. T. O. McBride, B. W. Pogue, E. D. Gerety, S. B. Poplack, U. L. Osterberg, and K. D. Paulsen, “Spectroscopic diffuse optical tomography for the quantitative assessment of hemoglobin concen-tration and oxygen saturation in breast tissue," Appl Opt 38, 5480-90 (1999). [CrossRef]
  20. H. Dehghani, B. W. Pogue, J. Shudong, B. Brooksby, and K. D. Paulsen, “Three-dimensional optical tomography: resolution in small-object imaging," Appl Opt 42, 3117-28 (2003). [CrossRef] [PubMed]
  21. D. A. Bluemke, C. A. Gatsonis, M. H. Chen, G. A. DeAngelis, N. DeBruhl, S. Harms, S. H. Heywang-KÄobrunner, N. Hylton, C. K. Kuhl, C. Lehman, E. D. Pisano, P. Causer, S. J. Schnitt, S. F. Smazal, C. B. Stelling, P. T. Weatherall, and M. D. Schnall, “Magnetic resonance imaging of the breast prior to biopsy," JAMA 292, 2735-42 (2004). [CrossRef] [PubMed]
  22. C. K. Kuhl, “Current status of breast MR imaging. Part 2. Clinical applications," Radiology 244, 672-91 (2007). [CrossRef] [PubMed]
  23. Q. Zhang, T. J. Brukilacchio, A. Li, J. J. Stott, T. Chaves, E. Hillman, T. Wu, M. Chorlton, E. Rafferty, R. H. Moore, D. B. Kopans, and D. A. Boas, “Coregistered tomographic x-ray and optical breast imaging: initial results," J Biomed Opt. 10, 024,033 (2005). [CrossRef]
  24. Q. Zhu, E. B. Cronin, A. A. Currier, H. S. Vine, M. Huang, N. Chen, and C. Xu, “Benign versus malignant breast masses: optical differentiation with US-guided optical imaging reconstruction," Radiology 237, 57-66 (2005). [CrossRef] [PubMed]
  25. V. Ntziachristos, “Concurrent diffuse optical tomography, spectroscopy and magnetic resonance imaging of Breast Cancer," Ph.D. thesis, UPenn (2000).
  26. G. Boverman, E. Miller, D. H. Brooks, D. Isaacson, Q. Fang, and D. A. Boas, “Estimation and statistical bounds for three-dimensional polar shapes in diffuse optical tomography," IEEE Trans. Med. Imaging 27, 752-765 (2008). [CrossRef]
  27. P. K. Yalavarthy, B. W. Pogue, H. Dehghani, C. Carpenter, S. Jiang, and K. D. Paulsen, “Structural information within regularization matrices improves near infrared diffuse optical tomogra-phy," Opt Express 15, 8043-58 (2007). [CrossRef] [PubMed]
  28. G. Boverman, E. L. Miller, A. Li, Q. Zhang, T. Chaves, D. H. Brooks, and D. A. Boas, “Quantita-tive spectroscopic diffuse optical tomography of the breast guided by imperfect a priori structural information," Phys. Med. Biol. 50, 3941-56 (2005). [CrossRef] [PubMed]
  29. M. Schweiger and S. R. Arridge, “Optical tomographic reconstruction in a complex head model using a priori region boundary information," Phys. Med. Biol. 44, 2703-2721 (1999). [CrossRef] [PubMed]
  30. M. Guven, B. Yazici, X. Intes, and B. Chance, “Diffuse optical tomography with apriori anatomical information," Phys. Med. Biol. 50, 2837-58 (2005). [CrossRef] [PubMed]
  31. A. Li, G. Boverman, Y. Zhang, D. Brooks, E. L. Miller, M. E. Kilmer, Q. Zhang, E. M. C. Hillman, and D. A. Boas, “Optimal linear inverse solution with multiple priors in diffuse optical tomography," Appl. Opt. 44, 1948-56 (2005). [CrossRef] [PubMed]
  32. M. S. Patterson, B. C. Wilson, and D. R. Wyman, “The propagation of optical radiation in tissue I. Models of radiation transport and their application," Lasers Med. Sci. 6, 155-168 (1991). [CrossRef]
  33. S. R. Arridge, “Optical tomography in medical imaging," Inverse Problems 15, R41-R93 (1999). [CrossRef]
  34. S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue," Med. Phys. 20, 299-309 (1993). [CrossRef] [PubMed]
  35. K. D. Paulsen and H. Jiang, “Spatially varying optical property reconstruction using a finite element diffusion equation approximation," Med Phys 22, 691-701 (1995). [CrossRef] [PubMed]
  36. S. Srinivasan, B. W. Pogue, C. Carpenter, P. K. Yalavarthy, and K. Paulsen,”A boundary element approach for image-guided near-infrared absorption and scatter estimation," Med Phys 34, 4545- 57 (2007). [CrossRef] [PubMed]
  37. R. T. Constable and R. M. Henkelman, “Contrast resolution and detectability in MR imaging," J. Comput. Assis. Tomogr. 15, 297-303 (1991). [CrossRef]
  38. G. Cohen, “Contrast-detail-dose analysis of six different computed tomographic scanners," J. Comput. Assis. Tomogr. 3, 197-203 (1979). [CrossRef]
  39. K. J. Robinson, C. J. Kotre, and K. Faulkner, “The use of contrast-detail test objects in the optimization of optical density in mammography," Br. J. Radiol. 68, 277-282 (1995). [CrossRef]
  40. S. W. Smith and H. Lopez, “A contrast-detail analysis of diagnostic ultrasound imaging," Med. Phys. 9, 4-12 (1982). [CrossRef] [PubMed]
  41. Mimics Software," http://materialise.com/mimics.
  42. A. D. Zacharopoulos, S. R. Arridge, O. Dorn, V. Kolehmainen, and J. Sikora, “Three-dimensional reconstruction of shape and piecewise constant region values for optical tomography using spheri-cal harmonic parametrization and a boundary element method," Inverse Problems 22, 1509-1532 (2006). [CrossRef]
  43. S. Srinivasan, C. Carpenter, B. W. Pogue, and K. D. Paulsen, “Image-guided near infrared spec-troscopy using boundary element method: phantom validation," Proc. SPIE 7171, 717103 (2009).
  44. B. Brooksby, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, C. Kogel, M. Doyley, J. B. Weaver, and S. P. Poplack, “Magnetic resonance-guided near-infrared tomography of the breast," Rev. Sci. Instrum. 75, 5262-5270 (2004). [CrossRef]
  45. S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, and K. D. Paulsen, “Spectrally constrained chromophore and scattering near-infrared tomography provides quantitative and robust recon-struction," Appl. Opt. 44, 1858-69 (2005). [CrossRef] [PubMed]
  46. A. Corlu, T. Durduran, R. Choe, M. Schweiger, E. M. Hillman, S. R. Arridge, and A. G. Yodh, “Uniqueness and wavelength optimization in continuous-wave multispectral diffuse optical tomog-raphy," Opt. Lett. 28, 2339-41 (2003). [CrossRef] [PubMed]
  47. A. Li, Q. Zhang, J. P. Culver, E. L. Miller, and D. A. Boas, “Reconstructing chromosphere concentration images directly by continuous-wave diffuse optical tomography," Opt. Lett. 29, 256- 8 (2004). [CrossRef] [PubMed]
  48. B. Brooksby, B. W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. D. Tosteson, J. Weaver, S. P. Poplack, and K. D. Paulsen, “Imaging breast adipose and fibroglandular tissue molecular signatures by using hybrid MRI-guided near-infrared spectral tomography," Proc. Natl. Acad. Sci. U S A 103, 8828-33 (2006). [CrossRef] [PubMed]
  49. S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography," Proc. Natl. Acad. Sci. U S A 100, 12,349-54 (2003). [CrossRef]
  50. B. W. Pogue and K. D. Paulsen, “High-resolution near-infrared tomographic imaging simulations of the rat cranium by use of a priori magnetic resonance imaging structural information," Opt. Lett. 23, 1716-8 (1998). [CrossRef]
  51. A. Li, E. L. Miller, M. E. Kilmer, T. J. Brukilacchio, T. Chaves, J. Stott, Q. Zhang, T. Wu, M. Chorlton, R. H. Moore, D. B. Kopans, and D. A. Boas, “Tomographic optical breast imaging guided by three-dimensional mammography," Appl. Opt. 42, 5181-90 (2003). [CrossRef] [PubMed]
  52. M. Huang, T. Xie, N. G. Chen, and Q. Zhu, “Simultaneous reconstruction of absorption and scattering maps with ultrasound localization: feasibility study using transmission geometry," Appl. Opt. 42, 4102-14 (2003). [CrossRef] [PubMed]
  53. B. W. Pogue, S. C. Davis, X. Song, B. A. Brooksby, H. Dehghani, and K. D. Paulsen, “Image analysis methods for diffuse optical tomography," J. Biomed. Opt. 11, 33,001 (2006). [CrossRef]
  54. B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes," J. Biomed. Opt. 9, 541-52 (2004). [CrossRef] [PubMed]
  55. N. Shah, A. Cerussi, D. Jakubowski, D. Hsiang, J. Butler, and B. Tromberg, “Spatial variations in optical and physiological properties of healthy breast tissue," J. Biomed. Opt. 9, 534-540 (2004). [CrossRef]
  56. B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry," J. Biomed. Opt. 11, 041,102-16 (2006).
  57. R. Cubeddu, C. D'Andrea, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Effects of the menstrual cycle on the red and near-infrared optical properties of the human breast," Photochem. Photobiol. 72, 383-91 (2000). [PubMed]
  58. J. A. Knight, K. M. Blackmore, J. Wong, S. Tharmalingam, and L. Lilge, “Optical spectroscopy of the breast in premenopausal women reveals tissue variation with changes in age and parity," Med. Phys. 37, 419-26 (2010). [CrossRef] [PubMed]
  59. M. C. Stahel, M. Wolf, A. Banos, and R. Hornung, “Optical properties of the breast during spontaneous and birth control pill-mediated menstrual cycles," Lasers Med. Sci. 24, 901-7 (2009). [CrossRef] [PubMed]
  60. A. Corlu, R. Choe, T. Durduran, K. Lee, M. Schweiger, S. R. Arridge, E. M. Hillman, and A. G. Yodh, “Diffuse optical tomography with spectral constraints and wavelength optimization," Appl. Opt. 44, 2082-2093 (2005). [CrossRef] [PubMed]
  61. B. Brendel and T. Nielsen, “Selection of optimal wavelengths for spectral reconstruction in diffuse optical tomography," J. Biomed. Opt. 14, 034,041 (2009).</jrn> [CrossRef]
  62. J. Wang, “Broadband Near-Infrared Tomography For Breast Cancer Imaging," Ph.D. thesis, Dartmouth College (Department of Physics and Astronomy) (2009).
  63. S. H. Chung, A. E. Cerussi, C. Klifa, H. M. Baek, O. Birgul, G. Gulsen, S. I. Merritt, D. Hsiang, and B. J. Tromberg, “In vivo water state measurements in breast cancer using broadband diffuse optical spectroscopy," Phys. Med. Biol. 53, 6713-27 (2008). [CrossRef] [PubMed]
  64. S. Merritt, G. Gulsen, G. Chiou, Y. Chu, C. Deng, A. E. Cerussi, A. J. Durkin, B. J. Tromberg, and O. Nalcioglu, “Comparison of water and lipid content measurements using diffuse optical spectroscopy and MRI in emulsion phantoms," Technol. Cancer Res. Treat. 2, 563-9 (2003). [PubMed]
  65. P. Taroni, A. Bassi, D. Comelli, A. Farina, R. Cubeddu, and A. Pifferi, “Diffuse optical spec-troscopy of breast tissue extended to 1100 nm," J. Biomed. Opt. 14, 054,030 (2009). [CrossRef]
  66. J.-H. Chen, B. A. Feig, D. J.-B. Hsiang, J. A. Butler, R. S. Mehta, S. Bahri, O. Nalcioglu, and M.-Y. Su, “Impact of MRI-evaluated neoadjuvant chemotherapy response on change of surgical recommendation in breast cancer," Ann. Surg. 249, 448-54 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited