OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 15 — Jul. 19, 2010
  • pp: 15956–15963

Thickness dependence of the terahertz response in 〈110〉-oriented GaAs crystals for electro-optic sampling at 1.55 µm

Zhenyu Zhao, Andre Schwagmann, Frank Ospald, Daniel C. Driscoll, Hong Lu, Arthur C. Gossard, and Jurgen H. Smet  »View Author Affiliations

Optics Express, Vol. 18, Issue 15, pp. 15956-15963 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (883 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We experimentally study the thickness dependence of the terahertz (THz) response in 〈110〉-oriented GaAs crystals for free space electro-optic sampling at 1.55 µm. The THz response bandwidths are analyzed and simulated under phase-matching condition with a model frequency response function. The results indicate that the detection bandwidth increases from 2 THz to 3 THz when the thickness of GaAs is reduced from 2 mm to 1 mm. Below 1 mm, the detected bandwidth is increasingly limited by the emitter characteristics and the finite probe pulse duration. The broadest bandwidth in experiment reaches 3.3 THz when using a 0.2 mm thick crystal, while it exceeds 5 THz in theory. The THz response sensitivity was studied experimentally and modeled taking into account the absorption of the THz radiation in the GaAs crystal. While absorption was found to be negligible for the crystal thickness range studied here, strong saturation is predicted theoretically for crystal thicknesses exceeding 5 mm.

© 2010 Optical Society of America

OCIS Codes
(230.2090) Optical devices : Electro-optical devices
(300.6495) Spectroscopy : Spectroscopy, teraherz
(060.3510) Fiber optics and optical communications : Lasers, fiber

ToC Category:

Original Manuscript: May 20, 2010
Revised Manuscript: June 28, 2010
Manuscript Accepted: June 28, 2010
Published: July 13, 2010

Zhenyu Zhao, Andre Schwagmann, Frank Ospald, Daniel C. Driscoll, Hong Lu, Arthur C. Gossard, and Jurgen H. Smet, "Thickness dependence of the terahertz response in 〈110〉-oriented GaAs crystals for electro-optic sampling at 1.55 µm," Opt. Express 18, 15956-15963 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. Sartorius, H. Roehle, H. Künzel, J. Böttcher, M. Schlak, D. Stanze, H. Venghaus, and M. Schell, “All-fiber terahertz time-domain spectrometer operating at 1.5 μm telecom wavelengths,” Opt. Express 16, 9565–9570 (2008). [CrossRef] [PubMed]
  2. A. Schneider, M. Stillhart, and P. Günter, “High efficiency generation and detection of terahertz pulses using laser pulses at telecommunication wavelengths,” Opt. Express 14, 5376–5384 (2006). [CrossRef] [PubMed]
  3. J. Mangeney, and P. Crozat, “Ion-irradiated In0.53Ga0.47As photoconductive antennas for THz generation and detection at 1.55 μm wavelength,” C. R. Phys. 9, 142–152 (2008). [CrossRef]
  4. A. Takazato, M. Kamakura, T. Matsui, J. Kitagawa, and Y. Kadoya, “Terahertz wave emission and detection using photoconductive antennas made on low-temperature-grown InGaAs with 1.56 μm pulse excitation,” Appl. Phys. Lett. 91, 011102 (2007). [CrossRef]
  5. H. Roehle, R. J. B. Dietz, H. J. Hensel, J. Böttcher, H. Künzel, D. Stanze, M. Schell, and B. Sartorius, “Next generation 1.5 μm terahertz antennas: mesa-structuring of InGaAs/InAlAs photoconductive layers,” Opt. Express 18, 2296–2301 (2010). [CrossRef] [PubMed]
  6. Y. Cai, I. Brener, J. Lopata, J. Wynn, L. Pfeiffer, J. B. Stark, Q. Wu, X.-C. Zhang, and J. F. Federici, “Coherent terahertz radiation detection: Direct comparison between free-space electro-optic sampling and antenna detection,” Appl. Phys. Lett. 73, 444–446 (1998). [CrossRef]
  7. S. L. Dexheimer, ed., Terahertz Spectroscopy: Principles and Applications, (CRC Press, 2007) [CrossRef]
  8. K. Sakai, ed., Terahertz Optoelectronics, (Springer Press, 2005) [CrossRef]
  9. L. Meignien, J. Mangeney, P. Crozat, L. Duvillaret, and M. Hanna, “Two-port vectorial terahertz electro-optic sampling system,” Appl. Phys. Lett. 92, 131103 (2007). [CrossRef]
  10. M. Nagai, K. Tanaka, H. Ohtake, T. Bessho, T. Sugiura, T. Hirosumi, and M. Yoshida, “Generation and detection of terahertz radiation by electro-optical process in GaAs using 1.56 μm fiber laser pulses,” Appl. Phys. Lett. 85, 3974–3976 (2004). [CrossRef]
  11. B. Pradarutti, G. Matthäus, S. Riehemann, G. Notni, S. Nolte, and A. Tünnermann, “Highly efficient terahertz electro-optic sampling by material optimization at 1060 nm,” Opt. Commun. 281, 5031–5035 (2008). [CrossRef]
  12. M. Vossebürger, M. Brucherseifer, G. C. Cho, H. G. Roskos, and H. Kurz, “Propagation effects in electro-optic sampling of terahertz pulses in GaAs,” Appl. Opt. 37, 3368–3371 (1998). [CrossRef]
  13. F. Ospald, D. Maryenko, K. von Klitzing, D. C. Driscoll, M. P. Hanson, H. Lu, A. C. Gossard, and J. H. Smet, “1.55 μm ultrafast photoconductive switches based on ErAs:InGaAs,” Appl. Phys. Lett. 92, 131117 (2008). [CrossRef]
  14. D. C. Driscoll, M. P. Hanson, A. C. Gossard, and E. R. Brown, “Ultrafast photo response at 1.55 μm in InGaAs with embedded semimetallic ErAs nanoparticles,” Appl. Phys. Lett. 86, 051908 (2005). [CrossRef]
  15. A. Schwagmann, Z.-Y. Zhao, F. Ospald, H. Lu, D. C. Driscoll, M. P. Hanson, A. C. Gossard, and J. H. Smet, “Terahertz emission characteristics of ErAs:InGaAs-based photoconductive antennas excited at 1.55 μm,” Appl. Phys. Lett. 96, 141108 (2010). [CrossRef]
  16. J. S. Blakemore, ed., Gallium Arsenide, (The American Institute of Physics, 1987)
  17. T. Hattori, Y. Homma, A. Mitsuishi, and M. Tacke, “Indices of refraction of ZnS, ZnSe, ZnTe, CdS, and CdTe in the far infrared,” Opt. Commun. 7, 229–232 (1973). [CrossRef]
  18. O. Madelung, U. Rössler, and M. Schulz, eds., Landolt-Börnstein - Group III Condensed Matter, (Springer Press, 2001) Vol. 41A1a
  19. Q. Wu, and X.-C. Zhang, “7 terahertz broadband GaP electro-optic sensor,” Appl. Phys. Lett. 70, 1784–1786 (1997). [CrossRef]
  20. A. Leitenstorfer, S. Hunsche, J. Shah, M. C. Nuss, and W. H. Knox, “Detectors and sources for ultra broadband electro-optic sampling: experiment and theory,” Appl. Phys. Lett. 74, 1516–1518 (1999). [CrossRef]
  21. H. J. Bakker, G. C. Cho, H. Kurz, Q. Wu, and X.-C. Zhang, “Distortion of terahertz pulses in electro-optic sampling,” J. Opt. Soc. Am. B 15, 1795–1801 (1998). [CrossRef]
  22. P. C. M. Planken, C. E. W. M. van Rijmenam, and R. N. Schouten, “Opto-electronic pulsed THz systems,” Semicond. Sci. Technol. 20, S121–S127 (2005). [CrossRef]
  23. J. Pastrňák, F. Karel, and O. Petřiček, “Optical absorption coefficient of semiconductors in the extrinsic region obtained by photoconductivity measurements: application to SI GaAs,” Semicond. Sci. Technol. 5, 867–870 (1990). [CrossRef]
  24. R. H. Stolen, “Far-infrared absorption in high resistivity GaAs,” Appl. Phys. Lett. 15, 74–75 (1969). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited