OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 15 — Jul. 19, 2010
  • pp: 15964–15974

Bowtie nano-aperture as interface between near-fields and a single-mode fiber

M. Mivelle, I.A. Ibrahim, F. Baida, G.W. Burr, D. Nedeljkovic, D. Charraut, J-Y. Rauch, R. Salut, and T. Grosjean  »View Author Affiliations


Optics Express, Vol. 18, Issue 15, pp. 15964-15974 (2010)
http://dx.doi.org/10.1364/OE.18.015964


View Full Text Article

Enhanced HTML    Acrobat PDF (717 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present the development and study of a single bowtie nano-aperture (BNA) at the end of a monomode optical fiber as an interface between near-fields/nano-optical objects and the fiber mode. To optimize energy conversion between BNA and the single fiber mode, the BNA is opened at the apex of a specially designed polymer fiber tip which acts as an efficient mediator (like a horn optical antenna) between the two systems. As a first application, we propose to use our device as polarizing electric-field nanocollector for scanning near-field optical microscopy (SNOM). However, this BNA-on-fiber probe may also find applications in nanolithography, addressing and telecommunications as well as in situ biological and chemical probing and trapping.

© 2010 Optical Society of America

OCIS Codes
(130.3130) Integrated optics : Integrated optics materials
(260.3910) Physical optics : Metal optics
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(180.4243) Microscopy : Near-field microscopy
(250.5403) Optoelectronics : Plasmonics
(130.5440) Integrated optics : Polarization-selective devices

ToC Category:
Integrated Optics

History
Original Manuscript: May 26, 2010
Revised Manuscript: June 9, 2010
Manuscript Accepted: June 14, 2010
Published: July 13, 2010

Virtual Issues
Vol. 5, Iss. 12 Virtual Journal for Biomedical Optics

Citation
M. Mivelle, I. A. Ibrahim, F. Baida, G. W. Burr, D. Nedeljkovic, D. Charraut, J-Y. Rauch, R. Salut, and T. Grosjean, "Bowtie nano-aperture as interface between near-fields and a single-mode fiber," Opt. Express 18, 15964-15974 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-15-15964


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Mühlschlegel, H.-J. Eisler, O. Martin, B. Hecht, and D. Pohl, “Resonnant optical antenna,” Science 308, 1607–1609 (2005). [CrossRef] [PubMed]
  2. R. Grober, R. Schoelkopf, and D. Prober, “Optical antenna: Towards a unity efficiency near-field optical probe,” Appl. Phys. Lett. 70(11), 1354–6 (1997). [CrossRef]
  3. P. Schuck, D. Fromm, A. Sundaramurthy, G. Kino, andW. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005). [CrossRef] [PubMed]
  4. T. Taminiau, R. Moerland, F. Segerink, L. Kuipers, and N. V. Hulst, “λ /4 resonance of an optical monopole antenna probes by single molecule fluorescence,” Nano Lett. 7, 28 (2007). [CrossRef] [PubMed]
  5. L. Wang, S. Uppuluri, E. Jin, and X. Xu, “Nanolithography using high transmission nanoscale bowtie apertures,” Nano Lett. 6, 361 (2006). [CrossRef] [PubMed]
  6. T. Kalkbrenner, U. Hakanson, A. Schädle, S. Burger, C. Henkel, and V. Sandoghdar, “Optical microscopy via spectral modifications of a nano-antenna,” Phys. Rev. Lett. 95(20), 200801.1–4 (2005). [CrossRef]
  7. A. Alù and N. Engheta, “Hertzian plasmonic nanodimer as an efficient optical nanoantenna,” Phys. Rev. B 78(19), 195111 (2008). [CrossRef]
  8. A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photon. 3, 654–657 (2009). [CrossRef]
  9. P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and Quenching of Single-Molecule Fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006). [CrossRef] [PubMed]
  10. J. Farahani, D. Pohl, H.-J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna : A tunable superemitter,” Phys. Rev. Lett. 95(1), 017402.1–4 (2005). [CrossRef]
  11. A. Sundaramurthy, P. J. Schuck, N. Conley, D. Fromm, G. Kino, and W. Moerner, “Toward Nanometre-Scale Optical photolithography: utilizing the near-field of bowtie optical nanoantennas,” Nano Lett. 6, 355 (2006). [CrossRef] [PubMed]
  12. N. Murphy-DuBay, L. Wang, E. C. Kinzel, S. M. V. Uppuluri, and X. Xu, “Nanopatterning using NSOM probes integrated with high transmission nanoscale bowtie aperture,” Opt. Express 16(4), 2584–2589 (2008). [CrossRef] [PubMed]
  13. M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. G. de Abajo, and R. Quidant, “Nanooptical trapping of Rayleigh particles and escherichia coli bacteria with resonant optical antennas,” Nano Lett. 9, 3387–3391 (2009). [CrossRef] [PubMed]
  14. P. Biagioni, M. Savoini, J. Huang, L. Duò, M. Finazzi, and B. Hecht, “Near-field polarization shaping by a near-resonant plasmonic cross antenna,” Phys. Rev. B 80(15), 153409 (2009). [CrossRef]
  15. T. Hanke, G. Krauss, D. Träutlein, B. Wild, R. Bratschitsch, and A. Leitenstorfer, “Efficient Nonlinear Light Emission of Single Gold Optical Antennas Driven by Few-Cycle Near-Infrared Pulses,” Phys. Rev. Lett. 103(25), 257404 (2009). [CrossRef]
  16. M. Danckwerts and L. Novotny, “Optical Frequency Mixing at Coupled Gold Nanoparticles,” Phys. Rev. Lett. 98(2), 026104 (2007). [CrossRef] [PubMed]
  17. L. Novotny, D. Pohl, and P. Regli, “Light propagation through nanometer-sized structures: the two-dimensionalaperture scanning near-field optical microscope,” J. Opt. Soc. Am. A 11, 1768–1779 (1994). [CrossRef]
  18. E. Smythe, E. Cubukcu, and F. Capasso, “Optical properties of surface plasmon resonances of coupled metallic nanorods,” Opt. Express 15(12), 7439–7447 (2007). [CrossRef] [PubMed]
  19. D. Chang, A. Sørensen, P. Hemmer, and M. Lukin, “Quantum Optics with Surface Plasmons,” Phys. Rev. Lett. 97(5), 053002. [PubMed]
  20. I. Ibrahim, M. Mivelle, T. Grosjean, J.-T. Allegre, G. Burr, and F. Baida, “The bowtie shaped nano-aperture: a modal study,” Accepted.
  21. A. Taflove and S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Third Edition (Artech House, Boston, 2005).
  22. J. Roden and S. Gedney, “Convolution PML (CPML): an efficient fdtd implementation of the CFS-PML for arbitrarymedia,” Microw. Opt. Technol. Lett 27, 334–339 (2000). [CrossRef]
  23. J.-S. Huang, J. Kern, P. Geisler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, and B. Hecht, “Mode imaging and selection in strongly coupled nanoantennas,” Nano Lett., To be published .
  24. T. Grosjean, M. Mivelle, and G. W. Burr, “Polarization-dependent extraction properties of bare fiber probes,” Opt. Lett. 35(3), 357–359 (2010). [CrossRef] [PubMed]
  25. L. Novotny and B. Hecht, Principle of nano-optics (Cambridge University Press, 2006).
  26. R. Bachelot, C. Ecoffet, D. Deloeil, P. Royer, and D.-J. Lougnot, “Integration of Micrometer-Sized Polymer Elements at the End of Optical Fibers by Free-Radical Photopolymerization,” Appl. Opt. 40, 5860–5871 (2001). [CrossRef]
  27. L. Novotny, M. Beversluis, K. Youngworth, and T. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86(23), 5251 (2001). [CrossRef] [PubMed]
  28. L. Wang and X. Xu, “High transmission nanoscale bowtie-shaped aperture probe for near-field optical imaging,” Appl. Phys. Lett. 90, 261105 (2007). [CrossRef]
  29. E. Betzig, J. K. Trautman, J. S. Weiner, T. D. Harris, and R. Wolfe, “Polarization contrast in near-field scanning optical microscopy,” Appl. Opt. 31(22), 4563–4568 (1992). [CrossRef] [PubMed]
  30. K. Lee, H. Kihm, J. Kihm, W. Choi, H. Kim, C. Ropers, D. Park, Y. Yoon, S. Choi, D. Woo, J. Kim, B. Lee, Q. Parka, C. Lienau, and D. Kim, “Vector field microscopic imaging of light,” Nat. Photon. 1, 53–56 (2007). [CrossRef]
  31. M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, “Probing the Magnetic Field of Light at Optical Frequencies,” Science 326, 550–553 (2009). [CrossRef] [PubMed]
  32. T. Grosjean, I. A. Ibrahim, M. A. Suarez, G. W. Burr, M. Mivelle, and D. Charraut, “Full vectorial imaging of electromagneticlight at subwavelength scale,” Opt. Express 18(6), 5809–5824 (2010). [CrossRef] [PubMed]
  33. E. Bortchagovsky, G. C. des Francs, D. Molenda, A. Naber, and U. Fischer, “Transmission of an obliquely incident beam of light through small apertures in a metal film,” Appl. Phys. B 84, 49–53 (2006). [CrossRef]
  34. U. Schröter and A. Dereux, “Surface plasmon polaritons on metal cylinders with dielectric core,” Phys. Rev. B. 64, 125420.1–10 (2001).</jrn> [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited