OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 15 — Jul. 19, 2010
  • pp: 15975–15980

A practical nanofabrication method: surface plasmon polaritons interference lithography based on backside-exposure technique

Mingyang He, Zhiyou Zhang, Sha Shi, Jinglei Du, Xupeng Li, Shuhong Li, and Wenying Ma  »View Author Affiliations

Optics Express, Vol. 18, Issue 15, pp. 15975-15980 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (906 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



For the experiments of surface plasmon polaritons (SPPs) interference lithography based on attenuated total reflection-coupling mode to be done conveniently, we introduce a backside-exposure technique in this paper. The physical mechanisms of SPPs interference with the backside -exposure method are studied and the interference fringes with feature size below 65nm are experimentally obtained. The technique can be used to fabricate nanostructures conveniently with large area, and avoids the difficulties for seeking high refractive prism and matching fluid.

© 2010 OSA

OCIS Codes
(220.3740) Optical design and fabrication : Lithography
(240.6680) Optics at surfaces : Surface plasmons
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Optical Design and Fabrication

Original Manuscript: June 1, 2010
Revised Manuscript: June 28, 2010
Manuscript Accepted: June 29, 2010
Published: July 13, 2010

Mingyang He, Zhiyou Zhang, Sha Shi, Jinglei Du, Xupeng Li, Shuhong Li, and Wenying Ma, "A practical nanofabrication method: surface plasmon polaritons interference lithography based on backside-exposure technique," Opt. Express 18, 15975-15980 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. P. Ghislain, V. B. Elings, K. B. Crozier, S. R. Manalis, S. C. Minne, K. Wilder, G. S. Kino, and C. F. Quate, “Near-field photolithography with a solid immersion lens,” Appl. Phys. Lett. 74(4), 501–503 (1999). [CrossRef]
  2. T. D. Milster, J. S. Jo, and K. Hirota, “Roles of propagating and evanescent waves in solid immersion lens systems,” Appl. Opt. 38(23), 5046–5057 (1999). [CrossRef]
  3. B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, “Near-field optical data storage using a solid immersion lens,” Appl. Phys. Lett. 65(4), 388 (1994). [CrossRef]
  4. R. J. Blaikie and S. J. McNab, “Evanescent interferometric lithography,” Appl. Opt. 40(10), 1692–1698 (2001). [CrossRef]
  5. Y. Ohdaira, S. Hoshiyama, T. Kawakami, K. Shinbo, K. Kato, and F. Kaneko, “Fabrication of surface relief gratings on azo dye thin films utilizing an interference of evanescent waves,” Appl. Phys. Lett. 86(5), 051102 (2005). [CrossRef]
  6. J. C. Martinez-Anton, “Surface relief subwavelength gratings by means of total internal reflection evanescent wave interference lithography,” J. Opt. A, Pure Appl. Opt. 8(4), 213–218 (2006). [CrossRef]
  7. J. K. Chua, V. M. Murukeshan, S. K. Tan, and Q. Y. Lin, “Four beams evanescent waves interference lithography for patterning of two dimensional features,” Opt. Express 15(6), 3437–3451 (2007). [CrossRef] [PubMed]
  8. B. W. Smith, Y. Fan, J. Zhou, N. Lafferty, and A. Estroff, “Evanescent wave imaging in optical lithography,” Proc. SPIE 6154, 100–108 (2006).
  9. Y. Zhou, M. H. Hong, J. Y. H. Fuh, L. Lu, and B. S. Lukiyanchuk, “Evanescent wave interference lithography for surface nano-structuring,” Phys. Scr. T 129, 35–37 (2007). [CrossRef]
  10. V. M. Murukeshan, J. K. Chua, S. K. Tan, and Q. Y. Lin, “Nano-scale three dimensional surface relief features using single exposure counterpropagating multiple evanescent waves interference phenomenon,” Opt. Express 16(18), 13857–13870 (2008). [CrossRef] [PubMed]
  11. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, 1988).
  12. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003). [CrossRef] [PubMed]
  13. W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, “Plasmonic Nanolithography,” Nano Lett. 4(6), 1085–1088 (2004). [CrossRef]
  14. X. G. Luo and T. Ishihara, “Surface plasmon resonant interference nanolithography technique,” Appl. Phys. Lett. 84(23), 4780–4782 (2004). [CrossRef]
  15. D. B. Shao and S. C. Chen, “Numerical simulation of surface-plasmon-assisted nanolithography,” Opt. Express 13(18), 6964–6973 (2005). [CrossRef] [PubMed]
  16. W. Srituravanich, S. Durant, H. Lee, C. Sun, and X. Zhang, “Deep subwavelength nanolithography using localized surface plasmons on planar silver mask,” J. Vac. Sci. Technol. B 23(6), 2636–2639 (2005). [CrossRef]
  17. Z. W. Liu, Q. H. Wei, and X. Zhang, “Surface plasmon interference nanolithography,” Nano Lett. 5(5), 957–961 (2005). [CrossRef] [PubMed]
  18. D. B. Shao and S. C. Chen, “Surface-plasmon-assisted nanoscale photolithography by polarized light,” Appl. Phys. Lett. 86(25), 253107 (2005). [CrossRef]
  19. D. B. Shao and S. C. Chen, “Direct patterning of three-dimensional periodic nanostructures by surface-plasmon-assisted nanolithography,” Nano Lett. 6(10), 2279–2283 (2006). [CrossRef] [PubMed]
  20. M. A. McCord, “Electron beam lithography for 0.13 µm manufacturing,” J. Vac. Sci. Technol. B 15(6), 2125–2129 (1997). [CrossRef]
  21. F. Watt, M. B. H. Breese, A. A. Bettiol, and J. A. van Kan, “Proton beam writing,” Mater. Today 10(6), 20–29 (2007). [CrossRef]
  22. J. Melngailis, “Focused ion beam lithography,” Nucl. Instrum. Methods Phys. Res. B 80, 1271–1280 (1993). [CrossRef]
  23. X. W. Guo, J. L. Du, Y. K. Guo, and J. Yao, “Large-area surface-plasmon polariton interference lithography,” Opt. Lett. 31(17), 2613–2615 (2006). [CrossRef] [PubMed]
  24. I. Pockrand, “Surface Plasma Oscillations at Silver Surfaces with Thin Transparent and Absorbing Coatings,” Surf. Sci. 72(3), 577–588 (1978). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited