OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 15 — Jul. 19, 2010
  • pp: 16005–16013

Nanostructure-enhanced laser tweezers for efficient trapping and alignment of particles

Benjamin K. Wilson, Tim Mentele, Stephanie Bachar, Emily Knouf, Ausra Bendoraite, Muneesh Tewari, Suzie H. Pun, and Lih Y. Lin  »View Author Affiliations


Optics Express, Vol. 18, Issue 15, pp. 16005-16013 (2010)
http://dx.doi.org/10.1364/OE.18.016005


View Full Text Article

Acrobat PDF (1820 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose and demonstrate a purely optical approach to trap and align particles using the interaction of polarized light with periodic nanostructures to generate enhanced trapping force. With a weakly focused laser beam, we observed efficient trapping and transportation of polystyrene beads with sizes ranging from 10 μm down to 190 nm as well as cancer cell nuclei. In addition, alignment of non-spherical dielectric particles to a 1-D periodic nanostructure was achieved with low laser intensity without attachment to birefringent crystals. Bacterial cells were trapped and aligned with incident optical intensity as low as 17 μW/μm2.

© 2010 OSA

OCIS Codes
(140.7010) Lasers and laser optics : Laser trapping
(170.4520) Medical optics and biotechnology : Optical confinement and manipulation
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:
Optical Trapping and Manipulation

History
Original Manuscript: April 21, 2010
Revised Manuscript: June 9, 2010
Manuscript Accepted: July 6, 2010
Published: July 14, 2010

Virtual Issues
Vol. 5, Iss. 12 Virtual Journal for Biomedical Optics

Citation
Benjamin K. Wilson, Tim Mentele, Stephanie Bachar, Emily Knouf, Ausra Bendoraite, Muneesh Tewari, Suzie H. Pun, and Lih Y. Lin, "Nanostructure-enhanced laser tweezers for efficient trapping and alignment of particles," Opt. Express 18, 16005-16013 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-15-16005


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. B.-S. Kim, J. Nikolovski, J. Bonadio, and D. J. Mooney, “Cyclic mechanical strain regulates the development of engineered smooth muscle tissue,” Nat. Biotechnol. 17(10), 979–983 (1999). [CrossRef] [PubMed]
  2. T. Matsuda and T. Sugawara, “Control of cell adhesion, migration, and orientation on photochemically microprocessed surfaces,” J. Biomed. Mater. Res. 32(2), 165–173 (1996). [CrossRef] [PubMed]
  3. S. E. Cross, Y.-S. Jin, J. Rao, and J. K. Gimzewski, “Nanomechanical analysis of cells from cancer patients,” Nat. Nanotechnol. 2(12), 780–783 (2007). [CrossRef] [PubMed]
  4. P. J. Pauzauskie, A. Radenovic, E. Trepagnier, H. Shroff, P. Yang, and J. Liphardt, “Optical trapping and integration of semiconductor nanowire assemblies in water,” Nat. Mater. 5(2), 97–101 (2006). [CrossRef] [PubMed]
  5. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970). [CrossRef]
  6. D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 21–27 (2003). [CrossRef] [PubMed]
  7. K. C. Neumann, E. H. Chadd, G. F. Liou, K. Bergman, and S. M. Block, “Characterization of photodamage to Escherichia coli in optical traps,” Biophys. J. 70, 1529–1533 (1996). [CrossRef] [PubMed]
  8. G. Leitz, E. Fällman, S. Tuck, and O. Axner, “Stress response in Caenorhabditis elegans caused by optical tweezers: wavelength, power, and time dependence,” Biophys. J. 82(4), 2224–2231 (2002). [CrossRef] [PubMed]
  9. I. Mori and Y. Ohshima, “Molecular neurogenetics of chemotaxis and thermotaxis in the nematode Caenorhabditis elegans,” Bioessays 19(12), 1055–1064 (1997). [CrossRef] [PubMed]
  10. E. J. G. Peterman, F. Gittes, and C. F. Schmidt, “Laser-induced heating in optical traps,” Biophys. J. 84(2), 1308–1316 (2003). [CrossRef] [PubMed]
  11. P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature 436(7049), 370–372 (2005). [CrossRef] [PubMed]
  12. L. Novotny, R. X. Bian, and X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79(4), 645–648 (1997). [CrossRef]
  13. A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photonics 2(6), 365–370 (2008). [CrossRef]
  14. L. Huang, S. J. Maerkl, and O. J. F. Martin, “Integration of plasmonic trapping in a microfluidic environment,” Opt. Express 17(8), 6018–6024 (2009). [CrossRef] [PubMed]
  15. M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys. 3(7), 477–480 (2007). [CrossRef]
  16. M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. J. García de Abajo, and R. Quidant, “Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas,” Nano Lett. 9(10), 3387–3391 (2009). [CrossRef] [PubMed]
  17. M. Pelton, M. Liu, H. Y. Kim, G. Smith, P. Guyot-Sionnest, and N. F. Scherer, “Optical trapping and alignment of single gold nanorods by using plasmon resonances,” Opt. Lett. 31(13), 2075–2077 (2006). [CrossRef] [PubMed]
  18. M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys. 5(12), 915–919 (2009). [CrossRef]
  19. X. Miao and L. Y. Lin, “Trapping and manipulation of biological particles through a plasmonic platform,” IEEE J. Sel. Top. Quant. Electron.: Special Issue on Biophotonics 13(6), 1655–1662 (2007). [CrossRef]
  20. X. Miao, B. K. Wilson, S. H. Pun, and L. Y. Lin, “Optical manipulation of micron/submicron sized particles and biomolecules through plasmonics,” Opt. Express 16(18), 13517–13525 (2008). [CrossRef] [PubMed]
  21. V. Bingelyte, J. Leach, J. Courtial, and M. J. Padgett, “Optically controlled three-dimensional rotation of microscopic objects,” Appl. Phys. Lett. 82(5), 829–831 (2003). [CrossRef]
  22. L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science 292(5518), 912–914 (2001). [CrossRef] [PubMed]
  23. M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinzstein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394(6691), 348–350 (1998). [CrossRef]
  24. W. A. Shelton, K. D. Bonin, and T. G. Walker, “Nonlinear motion of optically torqued nanorods,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(33 Pt 2A), 036204 (2005). [CrossRef] [PubMed]
  25. G. Volpe, R. Quidant, G. Badenes, and D. Petrov, “Surface plasmon radiation forces,” Phys. Rev. Lett. 96(23), 238101 (2006). [CrossRef] [PubMed]
  26. R. A. Weinberg, The Biology of Cancer (Garland Science, 2006).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: MOV (968 KB)     
» Media 2: MOV (3755 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited