OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 15 — Jul. 19, 2010
  • pp: 16035–16041

Highly efficient Yb:YAG channel waveguide laser written with a femtosecond-laser

Jörg Siebenmorgen, Thomas Calmano, Klaus Petermann, and Günter Huber  »View Author Affiliations

Optics Express, Vol. 18, Issue 15, pp. 16035-16041 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (714 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Using a femtosecond Ti:Sapphire laser, micro-tracks of material damage were written into Yb:YAG crystals. Waveguiding was achieved in a channel between pairs of tracks with guiding losses of 1.3 dB/cm at a wavelength of 1063 nm, due to a stress induced change of the refractive index. Pumped at a wavelength of 941 nm, highly efficient laser oscillation in a Yb:YAG channel waveguide at a wavelength of 1030 nm was demonstrated. An output power of 0.8 W at 1.2 W of launched pump power was achieved, resulting in a record slope efficiency of 75%.

© 2010 Optical Society of America

OCIS Codes
(230.7380) Optical devices : Waveguides, channeled
(140.3615) Lasers and laser optics : Lasers, ytterbium
(130.3990) Integrated optics : Micro-optical devices

ToC Category:
Laser Microfabrication

Original Manuscript: April 30, 2010
Revised Manuscript: July 1, 2010
Manuscript Accepted: July 9, 2010
Published: July 14, 2010

Jörg Siebenmorgen, Thomas Calmano, Klaus Petermann, and Günter Huber, "Highly efficient Yb:YAG channel waveguide laser written with a femtosecond-laser," Opt. Express 18, 16035-16041 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. . B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-tofemtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53,1749–1761 (1996). [CrossRef]
  2. . K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21,1729–1731 (1996). [CrossRef] [PubMed]
  3. . K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71,3329–3331 (1997). [CrossRef]
  4. . M. Pospiech,M. Emons, A. Steinmann, G. Palmer, R. Osellame, N. Bellini, G. Cerullo, and U. Morgner, “Double waveguide couplers produced by simultaneous femtosecond writing,” Opt. Express 17,3555–3563 (2009). [CrossRef] [PubMed]
  5. . S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, “Femtosecond waveguide writing: A new avenue to threedimensional integrated optics,” Appl. Phys. A 77,109–111 (2003). [CrossRef]
  6. . S. Taccheo, G. Della Valle, R. Osellame, G. Cerullo, N. Chiodo, P. Laporta, O. Svelto, A. Killi, U. Morgner, M. Lederer, and D. Kopf, “Er:Yb-doped waveguide laser fabricated by femtosecond laser pulses,” Opt. Lett. 29,2626–2628 (2004). [CrossRef] [PubMed]
  7. . M. Ams, P. Dekker, G. D. Marshall, and M. J. Withford, “Monolithic 100 mW Yb waveguide laser fabricated using the femtosecond-laser direct-write technique,” Opt. Lett. 34,247–249 (2009). [CrossRef] [PubMed]
  8. . C. N. Borca, V. Apostolopoulos, F. Gardillou, H. G. Limberger, M. Pollnau, and R.-P. Salathé, “Buried channel waveguides in Yb-doped KY(WO4)2 crystals fabricated by femtosecond laser irradiation,” Appl. Surf. Sci. 253,8300–8303 (2007). [CrossRef]
  9. . J. Burghoff, C. Grebing, S. Nolte, and A. Tünnermann, “Efficient frequency doubling in femtosecond laserwritten waveguides in lithium niobate,” Appl. Phys. Lett. 89,081108 (2006). [CrossRef]
  10. . A. H. Nejadmalayeri, P. R. Herman, J. Burghoff, M. Will, S. Nolte, and A. Tünnermann, “Inscription of optical waveguides in crystalline silicon by mid-infrared femtosecond laser pulses,” Opt. Lett. 30,964–966 (2005). [CrossRef] [PubMed]
  11. . A. G. Okhrimchuk, V. K. Mezentsev, V. V. Dvoyrin, A. S. Kurkov, E. M. Sholokhov, S. K. Turitsyn, A. V. Shestakov, and I. Bennion, “Waveguide-saturable absorber fabricated by femtosecond pulses in YAG:Cr 4+ crystal for Q-switched operation of Yb-fiber laser,” Opt. Lett. 34,3881–3883 (2009). [CrossRef] [PubMed]
  12. . W. F. Silva, C. Jacinto, A. Benayas, J. R. Vazquez de Aldana, G. A. Torchia, F. Chen, Y. Tan, and D. Jaque, “Femtosecond-laser-written, stress-induced Nd:YVO4 waveguides preserving fluorescence and Raman gain,” Opt. Lett. 35,916–918 (2010). [CrossRef] [PubMed]
  13. . A. G. Okhrimchuk, A. V. Shestakov, I. Khrushchev, and J. Mitchell, “Depressed cladding, buried waveguide laser formed in a YAG:Nd3+ crystal by femtosecond laser writing,” Opt. Lett. 30,2248–2250 (2005). [CrossRef] [PubMed]
  14. . G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd:yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett. 92,111103 (2008). [CrossRef]
  15. . T. Calmano, J. Siebenmorgen, O. Hellmig, K. Petermann, and G. Huber, “Nd:YAG waveguide laser with 1.3 W output power, fabricated by direct femtosecond laser writing,” Appl. Phys. B DOI 10.1007/s00340-010-3929-6 (2010). [CrossRef]
  16. . F.M. Bain, A.A. Lagatsky, R.R. Thomson, N.D. Psaila, N.V. Kuleshov, A.K. Kar, W. Sibbett, and C.T.A. Brown, “Ultrafast laser inscribed Yb:KGd(WO4)2 and Yb:KY(WO4)2 channel waveguide lasers,” Opt. Express 17,22417–22422 (2009). [CrossRef]
  17. . J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tünnermann, “Femtosecond laser written stress-induced Nd:Y3 Al5 O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B 97,251–255 (2009). [CrossRef]
  18. . T. Fukuda, S. Ishikawa, T. Fujii, K. Sakuma, and H. Hosoya, “Low-loss optical waveguides written by femtosecond laser pulses for three-dimensional photonic devices,” Proc. of SPIE 5339,524–538 (2004). [CrossRef]
  19. . G. D. Marshall, M. Ams, and M. J. Withford, “Direct laser written waveguide-Bragg gratings in bulk fused silica,” Opt. Lett. 31,2690–2691 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited