OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 15 — Jul. 19, 2010
  • pp: 16042–16054

Numerical Methods for modeling Photonic-Crystal VCSELs

Maciej Dems, Il-Sug Chung, Péter Nyakas, Svend Bischoff, and Krassimir Panajotov  »View Author Affiliations

Optics Express, Vol. 18, Issue 15, pp. 16042-16054 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1648 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We show comparison of four different numerical methods for simulating Photonic-Crystal (PC) VCSELs. We present the theoretical basis behind each method and analyze the differences by studying a benchmark VCSEL structure, where the PC structure penetrates all VCSEL layers, the entire top-mirror DBR, a fraction of the top-mirror DBR or just the VCSEL cavity. The different models are evaluated by comparing the predicted resonance wavelengths and threshold gains for different hole diameters and pitches of the PC. The agreement between the models is relatively good, except for one model, which corresponds to the effective index method. The simulation results elucidate the strength and weaknesses of the analyzed methods; and outline the limits of applicability of the different models.

© 2010 Optical Society of America

OCIS Codes
(000.3860) General : Mathematical methods in physics
(000.4430) General : Numerical approximation and analysis
(140.5960) Lasers and laser optics : Semiconductor lasers
(250.7260) Optoelectronics : Vertical cavity surface emitting lasers

ToC Category:
Lasers and Laser Optics

Original Manuscript: May 12, 2010
Revised Manuscript: June 10, 2010
Manuscript Accepted: June 10, 2010
Published: July 14, 2010

Maciej Dems, Il-Sug Chung, Peter Nyakas, Svend Bischoff, and Krassimir Panajotov, "Numerical Methods for modeling Photonic-Crystal VCSELs," Opt. Express 18, 16042-16054 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. . D. S. Song, S. H. Kim, H. G. Park, c. K. Kim, and Y. H. Lee, “Single-fundamental-mode photonic-crystal verticalcavity surface-emitting lasers,” Appl. Phys. Lett. 80, 3901–3903 (2002). [CrossRef]
  2. . A. J. Danner, T. S. Kim, and K. D. Choquette, “Single fundamental mode photonic crystal vertical cavity laser with improved output power,” Electron. Lett. 41, 325–326 (2005). [CrossRef]
  3. . T. Czyszanowski, M. Dems, and K. Panajotov, “Single mode condition and modes discrimination in photoniccrystal 1.3 μm AlInGaAs/InP VCSEL,” Opt. Express 15, 5604–5609 (2007). [CrossRef] [PubMed]
  4. . T. S. Kim, A. J. Danner, D. M. Grasso, E. W. Young, and K. D. Choquette, “Single fundamental mode photonic crystal vertical cavity surface emitting laser with 9 GHz bandwidth,” Electron. Lett. 40, 1340–1341 (2004). [CrossRef]
  5. . S. Bischoff, F. Romstad, M. Juhl, M. H. Madsen, J. Hanberg, and D. Birkedal, “2.5 Gbit/s modulation of 1300 nm single-mode photonic crystal VCSELs,” in “Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Technical Digest (CD),” (2006), OFA6.
  6. . F. Romstad, S. Bischoff, M. Juhl, S. Jacobsen, and D. Birkedal, “Photonic crystals for long-wavelength singlemode VCSELs,” Proc. SPIE 6908, 69080C (2008). [CrossRef]
  7. . D. S. Song, Y. J. Lee, H. W. Choi, and Y. H. Lee, “Polarization-controlled, single-transverse-mode, photoniccrystal, vertical-cavity, surface-emitting lasers,” Appl. Phys. Lett. 82, 3182–3184 (2003). [CrossRef]
  8. . M. Dems, T. Czyszanowski, and K. Panajotov, “Highly birefringent and dichroic photonic-crystal VCSEL design,” Opt. Commun 281, 3149–3152 (2008). [CrossRef]
  9. . G. R. Hadley, “Effective index model for vertical-cavity surface-emitting lasers,” Opt. Lett. 20, 1483–1485 (1995). [CrossRef] [PubMed]
  10. . G. P. Bava, P. Debernardi, and L. Fratta, “Three-dimensional model for vectorial fields in vertical-cavity surfaceemitting lasers,” Phys Rev. A 63, 23816 (2001). [CrossRef]
  11. . S. D. Gedney, “An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices,” IEEE T. Antenn. Propag. 44, 1630–1639 (1996). [CrossRef]
  12. . P. Nyakas, “Full-vectorial three-dimensional finite element optical simulation of vertical-cavity surface-emitting lasers,” IEEE J. Lightwave Techn. 25, 2427–2434 (2007). [CrossRef]
  13. . P. Nyakas, G. Varga, Z. Puskás, N. Hashizume, T. Kárpáti, T. Veszprémi, and G. Zsombok, “Self-consistent real three-dimensional simulation of vertical-cavity surface-emitting lasers,” J. Opt. Soc. Am. B 23, 1761–1769 (2006). [CrossRef]
  14. . M. Dems, R. Kotynski, and K. Panajotov, “Plane-wave admittance method — a novel approach for determining the electromagnetic modes in photonic structures,” Opt. Express 13, 3196–3207 (2005). [CrossRef] [PubMed]
  15. . M. Dems, “Plane-wave admittance method and its applications to modeling semiconductor lasers and planar photonic-crystal structures,” Ph.D. thesis, Technical University of Lodz (2007).
  16. . M. Dems and K. Panajotov, “Modeling of single- and multimode photonic-crystal planar waveguides with planewave admittance method,” Appl. Phys. B 89, 19–23 (2007). [CrossRef]
  17. . P. Bienstman, R. Baets, J. Vukusic, A. Larsson, M. J. Noble, M. Brunner, K. Gulden, P. Debernardi, L. Fratta, G. P. Bava, W. Wenzel, K. Klein, C. Conradi, R. Pregla, S. A. Riyopoulos, J.-F. P. Seurin, and S. L. Chuang, “Comparison of optical VCSEL models on the simulation of oxide-confined devices,” IEEE J. Quantum Electron. 37, 1618–1631 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited