OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 15 — Jul. 19, 2010
  • pp: 16064–16073

Planar photonic crystal cavities with far-field optimization for high coupling efficiency and quality factor

S. L. Portalupi, M. Galli, C. Reardon, T. F. Krauss, L. O’Faolain, L. C. Andreani, and D. Gerace  »View Author Affiliations

Optics Express, Vol. 18, Issue 15, pp. 16064-16073 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (3168 KB) | SpotlightSpotlight on Optics

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Different types of planar photonic crystal cavities aimed at optimizing the far-field emission pattern are designed and experimentally assessed by resonant scattering measurements. We systematically investigate the interplay between achieving the highest possible quality (Q) factor and maximizing the in- and out-coupling efficiency into a narrow emission cone. Cavities operate at telecommunications wavelengths, i.e. around ~ 1.55 µm, and are realized in silicon membranes. A strong modification of the far-field emission pattern, and therefore a substantial increase of the coupling efficiency in the vertical direction, is obtained by properly modifying the holes around L3, L5 and L7 type PhC cavities, as we predict theoretically and show experimentally. An optimal compromise yielding simultaneously a high Q-factor and a large coupling to the fundamental cavity mode is found for a L7-type cavity with a measured Q ≃ 62000, whose resonant scattering efficiency is improved by about two orders of magnitude with respect to the unmodified structure. These results are especially useful for prospective applications in light emitting devices, such as nano-lasers or single-photon sources, in which vertical in- and out-coupling of the electromagnetic field is necessarily required.

© 2010 Optical Society of America

OCIS Codes
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(230.5298) Optical devices : Photonic crystals

ToC Category:
Photonic Crystals

Original Manuscript: June 1, 2010
Revised Manuscript: June 25, 2010
Manuscript Accepted: July 5, 2010
Published: July 14, 2010

Virtual Issues
July 23, 2010 Spotlight on Optics

Simone L. Portalupi, Matteo Galli, Christopher Reardon, Thomas Krauss, Liam O'Faolain, Lucio C. Andreani, and Dario Gerace, "Planar photonic crystal cavities with far-field optimization for high coupling efficiency and quality factor," Opt. Express 18, 16064-16073 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. . J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light. (Princeton University Press, Princeton, 2008).
  2. . A. Badolato, K. Hennessy,M. Atatüre, J. Dreiser, E. Hu, P.M. Petroff, and A. Imamoğlu, “Deterministic coupling of single quantum dots to single nanocavity modes,” Science 308, 1158–1161 (2005). [CrossRef] [PubMed]
  3. . D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vučković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95, 013904 (2005). [CrossRef] [PubMed]
  4. . S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photon. 1, 449–458 (2007). [CrossRef]
  5. . S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96, 127404 (2006). [CrossRef] [PubMed]
  6. . M. Notomi, A. Shinya, S. Mitsugi, E. Kuramochi, and H. Ryu, “Waveguides, resonators and their coupled elements in photonic crystal slabs,” Opt. Express 12, 1551–1561 (2004). [CrossRef] [PubMed]
  7. . M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, “Optical bistable switching action of Si high-Q photonic-crystal nanocavities,” Opt. Express 13, 2678–2687 (2005). [CrossRef] [PubMed]
  8. . M. Belotti, J. Galisteo-Lopez, S. De Angelis, M. Galli, I. Maksymov, L. C. Andreani, D. Peyrade, and Y. Chen, “All-optical switching in 2D silicon photonic crystals with low loss waveguides and optical cavities,” Opt. Express 16, 11624–11636 (2008). [PubMed]
  9. . K. Srinivasan and O. Painter, “Momentum Space Design of High-Q Photonic Crystal Optical Cavities,” Opt. Express 10, 670–684 (2002). [PubMed]
  10. . D. Englund, I. Fushman, and J. Vučković, “General recipe for designing photonic crystal cavities,” Opt. Express 13, 5961–5975 (2005). [CrossRef] [PubMed]
  11. . L. C. Andreani, D. Gerace, and M. Agio, “Gap maps, diffraction losses, and exciton-polaritons in photonic crystal slabs,” Photon. Nanostruct. Fundam. Appl. 2, 103–110 (2004). [CrossRef]
  12. . Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003). [CrossRef] [PubMed]
  13. . B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4, 207–210 (2005). [CrossRef]
  14. . E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88, 041112 (2006). [CrossRef]
  15. . C. Sauvan, Ph. Lalanne, and J. P. Hugonin, “Slow-wave effect and mode-profile matching in photonic crystal microcavities,” Phys. Rev. B 71, 165118 (2005). [CrossRef]
  16. . S. Combrié, A. De Rossi, Q. V. Tran, and H. Benisty, “GaAs photonic crystal cavity with ultra-high Q: microwatt nonlinearity at 1.55 μm,” Opt. Lett. 33, 1908–1910 (2008). [CrossRef]
  17. . K. Srinivasan, P. E. Barclay, M. Borselli, O. Painter, “Optical-fiber-based measurement of an ultra-small volume high-Q photonic crystal microcavity,” Phys. Rev. B 70, 081306(R) (2004). [CrossRef]
  18. . P. E. Barclay, K. Srinivasan, and O. Painter, “Nonlinear response of silicon photonic crystal micresonators excited via an integrated waveguide and fiber taper,” Opt. Express,  13801–820 (2005). [CrossRef] [PubMed]
  19. . S. G. Johnson, S. Fan, A. Mekis, and J. D. Joannopoulos, “Multipole-cancellation mechanism for high-Q cavities in the absence of a complete photonic band gap,” Appl. Phys. Lett. 78, 3388–3390 (2001). [CrossRef]
  20. . S.-H. Kim, S.-K. Kim, and Y.-H. Lee, “Vertical beaming of wavelength-scale photonic crystal resonators,” Phys. Rev. B 73, 235117 (2006). [CrossRef]
  21. . F. Römer and B. Witzigmann, “Spectral and spatial properties of the spontaneous emission enhancement in photonic crystal cavities,” J. Opt. Soc. Am. B 25, 31–39 (2008). [CrossRef]
  22. . M. Larque, T. Karle, I. Robert-Philipp, and A. Beveratos, “Optimizing H1 cavities for the generation of entangled photon pairs,” New J. Phys. 11, 033022 (2009). [CrossRef]
  23. . N.-V.-Q. Tran, S. Combrié, and A. De Rossi, “Directive emission from high-Q photonic crystal cavities through band folding,” Phys. Rev. B 79, 041101(R) (2009). [CrossRef]
  24. . M. Toishi, D. Englund, A. Faraon, and J. Vučković, “High-brightness single photon source from a quantum dot in a directional emission nanocavity,” Opt. Express 17, 14618–14626 (2009). [CrossRef] [PubMed]
  25. . M. McCutcheon, G. W. Rieger, I. W. Cheung, J. F. Young, D. Dalacu, S. Frédéric, P. J. Poole, G. C. Aers, and R. Williams, “Resonant scattering and second-harmonic spectroscopy of planar photonic crystal microcavities,” Appl. Phys. Lett. 87, 221110 (2009). [CrossRef]
  26. . M. Galli, S. L. Portalupi, M. Belotti, L. C. Andreani, L. O’Faolain, and T. F. Krauss, “Light scattering and Fano resonances in high-Q photonic crystal nanocavities,” Appl. Phys. Lett. 94, 071101 (2009). [CrossRef]
  27. . P. Deotare, M. McCutcheon, I. Frank, M. Khan, and M. Loncar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94, 121106 (2009). [CrossRef]
  28. . D. Gerace and L. C. Andreani, “Effects of disorder on propagation losses and cavity Q-factors in photonic crystal slabs,” Photon. Nanostruct. Fundam. Appl. 3, 120–128 (2005). [CrossRef]
  29. . L. C. Andreani and D. Gerace, “Photonic crystal slabs with a triangular lattice of triangular holes investigated using a guided-mode expansion method,” Phys. Rev. B 73, 235114 (2006). [CrossRef]
  30. . Commercial FDTD software from Lumerical Solutions Inc. has been partly used for the 3D FDTD simulations reported in this work.
  31. . L. O’Faolain, X. Yuan, D. McIntyre, S. Thoms, H. Chong, R. M. De La Rue, and T. F. Krauss, “Low-loss propagation in photonic crystal waveguides,” Electron. Lett. 42, 1454–1455 (2006). [CrossRef]
  32. . A. Witvrouwa, B. Du Bois, P. De Moor, A. Verbist, C. Van Hoof, H. Bender, K. Baert, “A comparison between wet HF etching and vapor HF etching for sacrificial oxide removal,” Proc. SPIE 4174130–141 (2000). [CrossRef]
  33. . D. Gerace, H. E. Türeci, A. Imamoğlu, V. Giovannetti, and R. Fazio, “The quantum optical Josephson interferometer,” Nat. Phys. 5, 281–284 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited