OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 15 — Jul. 19, 2010
  • pp: 16090–16095

Fourier transform demodulation of pixelated phase-masked interferograms

M. Servin, J. C. Estrada, and O. Medina  »View Author Affiliations


Optics Express, Vol. 18, Issue 15, pp. 16090-16095 (2010)
http://dx.doi.org/10.1364/OE.18.016090


View Full Text Article

Enhanced HTML    Acrobat PDF (792 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Recently a new type of spatial phase shifting interferometer was proposed that uses a phase-mask over the camera’s pixels. This new interferometer allows one to phase modulate each pixel independently by setting the angle of a linear polarizer built in contact over the camera’s CCD. In this way neighbor pixels may have any desired (however fixed) phase shift without cross taking. The standard manufacturing of these interferometers uses a 2x2 array with phase-shifts of 0, π/2, π, and 3π/2 radians. This 2x2 array is tiled all over the video camera’s CCD. In this paper we propose a new way to phase demodulate these phase-masked interferograms using the squeezing phase-shifting technique. A notable advantage of this squeezing technique is that it allows one the use of Fourier interferometry wiping out the detuning error that most phase shifting algorithms suffers. Finally we suggest the use of an alternative phase-mask to phase modulate the camera’s pixels using a linear spatial carrier along a given axis.

© 2010 OSA

OCIS Codes
(120.2650) Instrumentation, measurement, and metrology : Fringe analysis
(120.3180) Instrumentation, measurement, and metrology : Interferometry

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: April 7, 2010
Revised Manuscript: July 2, 2010
Manuscript Accepted: July 5, 2010
Published: July 15, 2010

Citation
M. Servin, J. C. Estrada, and O. Medina, "Fourier transform demodulation of pixelated phase-masked interferograms," Opt. Express 18, 16090-16095 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-15-16090


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Malacara, M. Servin, and Z. Malacara, Interferogram Analysis for Optical Testing, 2 ed., (Taylor & Francis Group, CRC Press, 2005).
  2. M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. A 72(1), 156–160 (1982). [CrossRef]
  3. M. Servin, M. Cywiak, D. Malacara-Hernandez, J. C. Estrada, and J. A. Quiroga, “Spatial carrier interferometry from M temporal phase shifted interferograms: Squeezing Interferometry,” Opt. Express 16(13), 9276–9283 (2008). [CrossRef] [PubMed]
  4. R. Smithe and R. Moore, “Instantaneous phase measuring interferometry,” Opt. Eng. 23, 361–364 (1984).
  5. O. Y. Kwon, “Multichannel phase-shifted interferometer,” Opt. Lett. 9(2), 59–61 (1984). [CrossRef] [PubMed]
  6. C. L. Koliopoulos, “Simultaneous phase-shift interferometer,” Proc. SPIE 1531, 119–127 (1992). [CrossRef]
  7. B. K. A. Ngoi, K. Venkatakrishnan, and N. R. Sivakumar, “Phase-shifting interferometry immune to vibration,” Appl. Opt. 40(19), 3211–3214 (2001). [CrossRef]
  8. J. Millerd, N. Brock, J. Hayes, M. North-Morris, M. Novak, and J. C. Wyant, “Pixelated phase-mask dynamic interferometer,” Proc. SPIE 5531, 304–314 (2004). [CrossRef]
  9. M. Novak, J. Millerd, N. Brock, M. North-Morris, J. Hayes, and J. Wyant, “Analysis of a micropolarizer array-based simultaneous phase-shifting interferometer,” Appl. Opt. 44(32), 6861–6868 (2005). [CrossRef] [PubMed]
  10. J. F. Mosiño, M. Servin, J. C. Estrada, and J. A. Quiroga, “Phasorial analysis of detuning error in temporal phase shifting algorithms,” Opt. Express 17(7), 5618–5623 (2009). [CrossRef] [PubMed]
  11. B. T. Kimbrough, “Pixelated mask spatial carrier phase shifting interferometry algorithms and associated errors,” Appl. Opt. 45(19), 4554–4562 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited