OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 15 — Jul. 19, 2010
  • pp: 16120–16132

Light scattering, field localization and local density of states in co-axial plasmonic nanowires

Nate Lawrence and Luca Dal Negro  »View Author Affiliations


Optics Express, Vol. 18, Issue 15, pp. 16120-16132 (2010)
http://dx.doi.org/10.1364/OE.18.016120


View Full Text Article

Enhanced HTML    Acrobat PDF (2223 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Based on analytical scattering theory, we develop a multipolar expansion method to investigate systematically the near-field enhancement, far-field scattering and Local Density of States (LDOS) spectra in concentric metal-insulator-metal (MIM) cylindrical nanostructures, or coaxial plasmonic nanowires (CPNs). We demonstrate that these structures support distinctive plasmonic resonances with strongly reduced scattering in the far-field zone and significant electric field enhancement in deep sub-wavelength dielectric regions. Additionally, we study systematically the effects of geometrical parameters and dielectric index on the near-field and far-field plasmonic response of CPNs in the visible and near infrared spectral range. Finally, we demonstrate that CPNs provide a convenient approach for engineering strong (almost three orders of magnitude) LDOS enhancement in sub-wavelength dielectric gaps at multiple frequencies. These results enable the engineering of multiband optical detectors and CPNs-based light emitters with simultaneously enhanced excitation and emission rates for nanoplasmonics.

© 2010 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(290.4020) Scattering : Mie theory
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Optics at Surfaces

History
Original Manuscript: May 26, 2010
Revised Manuscript: June 17, 2010
Manuscript Accepted: June 17, 2010
Published: July 15, 2010

Citation
Nate Lawrence and Luca Dal Negro, "Light scattering, field localization and local density of states in co-axial plasmonic nanowires," Opt. Express 18, 16120-16132 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-15-16120


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007)
  2. R. Zia, M. Selker, P. Catrysse, and M. Brongersma, “Geometries and materials for subwavelength surface plasmon modes,” J. Opt. Soc. Am. 21(12), 2442 (2004). [CrossRef]
  3. R. Zia, J.A. Schuller, A. Chandran, and M. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9,7–8 (2006). [CrossRef]
  4. P. B. Catrysse and S. Fan, “Understanding the dispersion of coaxial plasmonic structures though a connection with the planar metal-insulator-metal geometry,” Appl. Phys. Lett. 94(23), 231111 (2009). [CrossRef]
  5. J. Rybczynski, K. Kempa, A. Herczynski, Y. Wang, M. J. Naughton, Z. F. Ren, Z. P. Huang, D. Cai, and M. Giersig, “Subwavelength waveguide for visible light,” Appl. Phys. Lett. 90(2), 021104 (2007). [CrossRef]
  6. M. Kushwaha and B. Djafari-Rouhani, “Green-funciton theory of confined plasmons in coaxial cylindrical geometries: Zero magnetic field,” Phys. Rev. Lett. B 67, 245320 (2003).
  7. M. L. Brongersma, and P. G. Kik, Surface Plasmon Nanophotonics (Springer, 2007)
  8. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003). [CrossRef] [PubMed]
  9. F. Hao, P. Nordlander, M. Burnett, and S. Maier, “Enhanced tunability and linewidth sharpening of plasmon resonances in hybridized metallic ring/disk nanocavities,” Phys. Rev. B 76(24), 245417 (2007). [CrossRef]
  10. E. Prodan and P. Nordlander, “Structural Tunability of the plasmon resonances in metallic nanoshells,” Nanoletters 3(4), 543–547 (2003).
  11. J. Hu, M. Ouyang, P. Yang, and C. M. Lieber, “Controlled growth and electrical properties of heterojunctions of carbon nanotubes and silicon nanowires,” Nature 399(6731), 48–51 (1999). [CrossRef]
  12. X. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, “Single-nanowire electrically driven lasers,” Nature 421(6920), 241–245 (2003). [CrossRef] [PubMed]
  13. B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007). [CrossRef] [PubMed]
  14. C. Colombo, M. Heiβ, M. Gratzel, and A. Fontcuberta i Morral, “Gallium arsenide p-i-n radial structures for photovoltaic applications,” Appl. Phys. Lett. 94, 173108 (2009). [CrossRef]
  15. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987). [CrossRef] [PubMed]
  16. D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vucković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95(1), 013904 (2005). [CrossRef] [PubMed]
  17. J. McKeever, A. Boca, A. D. Boozer, J. R. Buck, and H. J. Kimble, “Experimental realization of a one-atom laser in the regime of strong coupling,” Nature 425(6955), 268–271 (2003). [CrossRef] [PubMed]
  18. Y. C. Jun, R. M. Briggs, H. A. Atwater, and M. L. Brongersma, “Broadband enhancement of light emission in silicon slot waveguides,” Opt. Express 17(9), 7479–7490 (2009). [CrossRef] [PubMed]
  19. Y. Kurokawa and H. Miyazaki, “Metal-insulator-metal plasmon nanocavities: Analysis of optical properties,” Phys. Rev. B 75(3), 035411 (2007). [CrossRef]
  20. Y. Gong, S. Yerci, R. Li, L. Dal Negro, and J. Vucković, “Enhanced light emission from erbium doped silicon nitride in plasmonic metal-insulator-metal structures,” Opt. Express 17(23), 20642–20650 (2009). [CrossRef] [PubMed]
  21. A. Gopinath, S. V. Boriskina, S. Selcuk, R. Li, and L. Dal Negro, “Enhancement of the 1.55mm Erbium3+ emission from quasi-periodic plasmonic arrays,” Appl. Phys. Lett. 96(7), 071113 (2010). [CrossRef]
  22. A. Boriskin and A. Nosich, “Whispering-Gallery and Luneberg-Lens Effects in a Beam-Fed Circularly Layered Dielectric Cylinder,” IEEE Trans. on Antennas and Propagation, Vol. 50, No. 9; (2002).
  23. A. A. Asatryan, K. Busch, R. C. McPhedran, L. C. Botten, C. M. de Sterke, and N. A. Nicorovici, “Two-dimensional Green’s function and local density of states in photonic crystals consisting of a finite number of cylinders of infinite length,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 63(4), 046612 (2001). [CrossRef] [PubMed]
  24. P. A. Martin, Multiple Scattering, (Cambridge University Press, 2006)
  25. L. Novotny, and B. Hecht, Principles of nano-optics, (Cambridge University Press, 2006)
  26. C. F. Bohren, and D. R. Huffman, Absorption and scattering of light by small particles, (John Wiley, 1983)
  27. P. Johnson and R. Christy, “Optical constants of Noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972). [CrossRef]
  28. G. W. Milton and N. A. Nicorovici, “On the cloaking effects associated with anomalous localized resonance,” Proc. R. Soc A. 462(2074), 3027–3059 (2006). [CrossRef]
  29. N. A. Nicorovici, G. W. Milton, R. C. McPhedran, and L. C. Botten, “Quasistatic cloaking of two-dimensional polarizable discrete systems by anomalous resonance,” Opt. Express 15(10), 6314–6323 (2007). [CrossRef] [PubMed]
  30. Z. B. Wang, B. S. Luk’yanchuk, M. H. Hong, Y. Lin, and T. C. Chong, “Energy flow around a small particle investigated by classical Mie theory,” Phys. Rev. B 70(3), 035418 (2004). [CrossRef]
  31. M. Bashevoy, V. Fedotov, and N. Zheludev, “Optical whirlpool on an absorbing metallic nanoparticle,” Opt. Express 13(21), 8372–8379 (2005). [CrossRef] [PubMed]
  32. R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Multimedia

Multimedia FilesRecommended Software
» Media 1: MOV (1003 KB)      QuickTime
» Media 2: MOV (1589 KB)      QuickTime

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited