OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 15 — Jul. 19, 2010
  • pp: 16133–16138

Micromachined lens microstages for two-dimensional forward optical scanning

Hyeon-Cheol Park, Cheol Song, and Ki-Hun Jeong  »View Author Affiliations

Optics Express, Vol. 18, Issue 15, pp. 16133-16138 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1555 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This work presents a novel approach for a miniaturized optical scanning module based on lateral and piston motion of two commercial lenses by MEMS actuation. Two aspheric glass lenses of 1 mm diameter are assembled on two electrostatically actuated microstages moving along perpendicular axes to tilt optical path. The compact integration secures the effective beam aperture of 0.6 mm within the device width of 2 mm. The lens mass provides high-Q motions at low operating voltages of DC 5 V and AC 10 Vpp, i.e., the lateral angle of ±4.6° at 277 Hz and the vertical angle of ±5.3° at 204 Hz. The device can provide a new direction for miniaturizing laser scanning based endoscopes or handheld projectors.

© 2010 OSA

OCIS Codes
(120.3890) Instrumentation, measurement, and metrology : Medical optics instrumentation
(120.5800) Instrumentation, measurement, and metrology : Scanners
(220.4000) Optical design and fabrication : Microstructure fabrication
(230.3990) Optical devices : Micro-optical devices

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: May 26, 2010
Revised Manuscript: July 5, 2010
Manuscript Accepted: July 7, 2010
Published: July 15, 2010

Virtual Issues
Vol. 5, Iss. 12 Virtual Journal for Biomedical Optics

Hyeon-Cheol Park, Cheol Song, and Ki-Hun Jeong, "Micromachined lens microstages for two-dimensional forward optical scanning," Opt. Express 18, 16133-16138 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. Piyawattanametha, E. D. Cocker, L. D. Burns, R. P. J. Barretto, J. C. Jung, H. Ra, O. Solgaard, and M. J. Schnitzer, “In vivo brain imaging using a portable 2.9 g two-photon microscope based on a microelectromechanical systems scanning mirror,” Opt. Lett. 34(15), 2309–2311 (2009). [CrossRef] [PubMed]
  2. J. T. C. Liu, M. J. Mandella, H. Ra, L. K. Wong, O. Solgaard, G. S. Kino, W. Piyawattanametha, C. H. Contag, and T. D. Wang, “Miniature near-infrared dual-axes confocal microscope utilizing a two-dimensional microelectromechanical systems scanner,” Opt. Lett. 32(3), 256–258 (2007). [CrossRef] [PubMed]
  3. R. A. Conant, J. T. Nee, K. Y. Lau, and R. S. Muller, “A flat high-frequency scanning micromirror,” in Proceedings of the Solid-State Sensor and Actuator Workshop, (Transducers Research Foundation, Cleveland, Ohio, 2000), pp. 6–9.
  4. H. Toshiyoshi, G. D. J. Su, J. LaCosse, and M. C. Wu, “A surface micromachined optical scanner array using photoresist lenses fabricated by a thermal reflow process,” J. Lightwave Technol. 21(7), 1700–1708 (2003). [CrossRef]
  5. A. Jain and H. Xie, “An electrothermal microlens scanner with low-voltage large-vertical-displacement actuation,” IEEE Photon. Technol. Lett. 17(9), 1971–1973 (2005). [CrossRef]
  6. C. P. B. Siu, H. Zeng, and M. Chiao, “Magnetically actuated MEMS microlens scanner for in vivo medical imaging,” Opt. Express 15(18), 11154–11166 (2007), http://www.opticsinfobase.org/VJBO/abstract.cfm?URI=oe-15-18-11154 . [CrossRef] [PubMed]
  7. S. Kwon and L. P. Lee, “Micromachined transmissive scanning confocal microscope,” Opt. Lett. 29(7), 706–708 (2004). [CrossRef] [PubMed]
  8. K. Takahashi, H. N. Kwon, M. Mita, K. Saruta, J.-H. Lee, H. Fujita, and H. Toshiyoshi, “A silicon micromachined f–θ micro lens scanner array by double-deck device design technique,” IEEE J. Sel. Top. Quantum Electron. 13(2), 277–282 (2007). [CrossRef]
  9. X. Liu, M. J. Cobb, Y. Chen, M. B. Kimmey, and X. Li, “Rapid-scanning forward-imaging miniature endoscope for real-time optical coherence tomography,” Opt. Lett. 29(15), 1763–1765 (2004). [CrossRef] [PubMed]
  10. T. Ota, H. Fukuyama, Y. Ishihara, H. Tanaka, and T. Takamatsu, “In situ fluorescence imaging of organs through compact scanning head for confocal laser microscopy,” J. Biomed. Opt. 10(2), 024010 (2005). [CrossRef] [PubMed]
  11. Y. Wang, M. Bachman, G. P. Li, S. Guo, B. J. F. Wong, and Z. Chen, “Low-voltage polymer-based scanning cantilever for in vivo optical coherence tomography,” Opt. Lett. 30(1), 53–55 (2005). [CrossRef] [PubMed]
  12. Y. Fukuta, H. Fujita, and H. Toshiyoshi, “Vapor Hydrofluoric Acid Sacrificial Release Technique for Micro Electro Mechanical Systems Using Labware,” Jpn. J. Appl. Phys. 42(Part 1, No. 6A), 3690–3694 (2003). [CrossRef]
  13. Y. S. S. Chiu, K. D. J. Chang, R. W. Johnstone, and M. Parameswaran, “Fuse-tethers in MEMS,” J. Micromech. Microeng. 16(3), 480–486 (2006). [CrossRef]
  14. S. S. Rao, Mechanical Vibrations, (Reading: Addison-Wesley, 1990), Chap. 3.
  15. H. J. Shin, M. C. Pierce, D. Lee, H. Ra, O. Solgaard, and R. Richards-Kortum, “Fiber-optic confocal microscope using a MEMS scanner and miniature objective lens,” Opt. Express 15(15), 9113–9122 (2007), http://www.opticsinfobase.org/VJBO/abstract.cfm?URI=oe-15-15-9113 . [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited