OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 15 — Jul. 19, 2010
  • pp: 16139–16145

Wavelength-dependent transmission through sharp 90° bends in sub-wavelength metallic slot waveguides

Daniel R. Mason, Dmitri. K. Gramotnev, and Kwang S. Kim  »View Author Affiliations

Optics Express, Vol. 18, Issue 15, pp. 16139-16145 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (838 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper, we present a comprehensive numerical study of the wavelength-dependence of transmission through sharp 90° bends in metallic slot waveguides with sub-wavelength localization and varying geometrical parameters. In particular, it is demonstrated that increasing the plasmon wavelength results in a significant increase (up to nearly 100%) of transmission through the bend, combined with a reduction in the mode asymmetry in the second arm of the bend. The mode asymmetry and its relaxation are explained by interference of the transmitted mode with non-propagating and leaky modes generated at the bend. Comparison with the two-dimensional case of a metal-dielectric-metal waveguide is also conducted, showing significant differences for the slot waveguides based on the presence of different non-propagating and leaky modes.

© 2010 OSA

OCIS Codes
(130.0130) Integrated optics : Integrated optics
(130.2790) Integrated optics : Guided waves
(240.0240) Optics at surfaces : Optics at surfaces
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Optics at Surfaces

Original Manuscript: June 1, 2010
Revised Manuscript: June 28, 2010
Manuscript Accepted: June 29, 2010
Published: July 15, 2010

Daniel R. Mason, Dmitri. K. Gramotnev, and Kwang S. Kim, "Wavelength-dependent transmission through sharp 90° bends in sub-wavelength metallic slot waveguides," Opt. Express 18, 16139-16145 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Plasmonic Nanoguides and Circuits, S. I. Bozhevolnyi, ed. (Pan Stanford Pub. Pte. Ltd., 2009).
  2. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010). [CrossRef]
  3. I. V. Novikov and A. A. Maradudin, “Channel polaritons,” Phys. Rev. B 66(3), 035403 (2002). [CrossRef]
  4. D. F. P. Pile and D. K. Gramotnev, “Channel plasmon-polariton in a triangular groove on a metal surface,” Opt. Lett. 29(10), 1069–1071 (2004). [CrossRef] [PubMed]
  5. D. K. Gramotnev and D. F. P. Pile, “Single-mode subwavelength waveguide with channel plasmon-polaritons in triangular grooves on a metal surface,” Appl. Phys. Lett. 85(26), 6323–6325 (2004). [CrossRef]
  6. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95(4), 046802 (2005). [CrossRef] [PubMed]
  7. V. S. Volkov, S. I. Bozhevolnyi, E. Devaux, and T. W. Ebbesen, “Bend loss for channel plasmon polaritons,” Appl. Phys. Lett. 89(14), 143108 (2006). [CrossRef]
  8. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006). [CrossRef] [PubMed]
  9. M. Yan and M. Qiu, “Guided plasmon polariton at 2D metal corners,” J. Opt. Soc. Am. B 24(9), 2333–2342 (2007). [CrossRef]
  10. S. I. Bozhevolnyi and K. V. Nerkararyan, “Analytic description of channel plasmon polaritons,” Opt. Lett. 34(13), 2039–2041 (2009). [CrossRef] [PubMed]
  11. L. Liu, Z. Han, and S. He, “Novel surface plasmon waveguide for high integration,” Opt. Express 13(17), 6645–6650 (2005). [CrossRef] [PubMed]
  12. G. Veronis and S. Fan, “Guided subwavelength plasmonic mode supported by a slot in a thin metal film,” Opt. Lett. 30(24), 3359–3361 (2005). [CrossRef]
  13. D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87(26), 261114 (2005). [CrossRef]
  14. G. Veronis and S. Fan, “Modes of subwavelength plasmonic slot waveguides,” J. Lightwave Technol. 25(9), 2511–2521 (2007). [CrossRef]
  15. D. F. P. Pile, D. K. Gramotnev, R. F. Oulton, and X. Zhang, “On long-range plasmonic modes in metallic gaps,” Opt. Express 15(21), 13669–13674 (2007). [CrossRef] [PubMed]
  16. K. C. Vernon, D. K. Gramotnev, and D. F. P. Pile, “Channel plasmon-polariton modes in V grooves filled with dielectric,” J. Appl. Phys. 103(3), 034304 (2008). [CrossRef]
  17. D. F. P. Pile and D. K. Gramotnev, “Plasmonic subwavelength waveguides: next to zero losses at sharp bends,” Opt. Lett. 30(10), 1186–1188 (2005). [CrossRef] [PubMed]
  18. L. Chen, B. Wang, and G. P. Wang, “High efficiency 90° bending metal heterowaveguides for nanophotonic integration,” Appl. Phys. Lett. 89(24), 243120 (2006). [CrossRef]
  19. G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87(13), 131102 (2005). [CrossRef]
  20. T. W. Lee and S. K. Gray, “Subwavelength light bending by metal slit structures,” Opt. Express 13(24), 9652–9659 (2005). [CrossRef] [PubMed]
  21. Rsoft Design Group, RsoftFullWAVE version 8.2. http://www.rsoftdesign.com
  22. A. D. Rakic, A. B. Djurišic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37(22), 5271–5283 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited