OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 15 — Jul. 19, 2010
  • pp: 16162–16174

3D integration of photonic crystal devices: vertical coupling with a silicon waveguide

L. Ferrier, P. Rojo Romeo, X. Letartre, E. Drouard, and P. Viktorovitch  »View Author Affiliations


Optics Express, Vol. 18, Issue 15, pp. 16162-16174 (2010)
http://dx.doi.org/10.1364/OE.18.016162


View Full Text Article

Enhanced HTML    Acrobat PDF (1130 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Two integrated devices based on the vertical coupling between a photonic crystal microcavity and a silicon (Si) ridge waveguide are presented in this paper. When the resonator is coupled to a single waveguide, light can be spectrally extracted from the waveguide to free space through the far field emission of the resonator. When the resonator is vertically coupled to two waveguides, a vertical add-drop filter can be realized. The dropping efficiency of these devices relies on a careful design of the resonator. In this paper, we use a Fabry-Perot (FP) microcavity composed of two photonic crystal (PhC) slab mirrors. Thanks to the unique dispersion properties of slow Bloch modes (SBM) at the flat extreme of the dispersion curve, it is possible to design a FP cavity exhibiting two quasi-degenerate modes. This specific configuration allows for a coupling efficiency that can theoretically achieve 100%. Using 3D FDTD calculations, we discuss the design of such devices and show that high dropping efficiency can be achieved between the Si waveguides and the PhC microcavity.

© 2010 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(230.5750) Optical devices : Resonators
(230.5298) Optical devices : Photonic crystals

ToC Category:
Photonic Crystals

History
Original Manuscript: May 10, 2010
Revised Manuscript: June 23, 2010
Manuscript Accepted: June 28, 2010
Published: July 15, 2010

Citation
L. Ferrier, P. Rojo Romeo, X. Letartre, E. Drouard, and P. Viktorovitch, "3D integration of photonic crystal devices: vertical coupling with a silicon waveguide," Opt. Express 18, 16162-16174 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-15-16162


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Boutami, B. Ben Bakir, X. Letartre, J.-L. Leclercq, and P. Viktorovitch, “Photonic crystal slab mirrors for an ultimate vertical and lateral confinement of light in vertical Fabry Perot cavities,” Proc. SPIE 6989, 69890V (2008). [CrossRef]
  2. S. Boutami, B. Benbakir, X. Letartre, J. L. Leclercq, P. Regreny, and P. Viktorovitch, “Ultimate vertical Fabry-Perot cavity based on single-layer photonic crystal mirrors,” Opt. Express 15(19), 12443–12449 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-15-19-12443 . [CrossRef] [PubMed]
  3. C. Smith, R. De La Rue, M. Rattier, S. Olivier, H. Benisty, C. Weisbuch, T. Krauss, R. Houdré, and U. Oesterle, “Coupled guide and cavity in a two-dimensional photonic crystal,” Appl. Phys. Lett. 78(11), 1487 (2001). [CrossRef]
  4. M. Notomi, A. Shinya, S. Mitsugi, E. Kuramochi, and H. Ryu, “Waveguides, resonators and their coupled elements in photonic crystal slabs,” Opt. Express 12(8), 1551–1561 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?&id=79588 . [CrossRef] [PubMed]
  5. Z. Zhang and M. Qiu, “Compact in-plane channel drop filter design using a single cavity with two degenerate modes in 2D photonic crystal slabs,” Opt. Express 13(7), 2596–2604 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-7-2596 . [CrossRef] [PubMed]
  6. C. Seassal, Y. Desieres, X. Letartre, C. Grillet, P. Rojo-Romeo, P. Viktorovitch, and T. Benyattou, “Optical coupling between a two-dimensional photonic crystal based microcavity and single-line defect waveguide on InP membranes,” IEEE J. Quantum Electron. 38(7), 811–815 (2002). [CrossRef]
  7. H. Takano, B. Song, T. Asano, and S. Noda, “Highly efficient in-plane channel drop filter in a two-dimensional heterophotonic crystal,” Appl. Phys. Lett. 86(24), 241101 (2005). [CrossRef]
  8. H. Takano, Y. Akahane, T. Asano, and S. Noda, “In-plane-type channel drop filter in a two-dimensional photonic crystal slab,” Appl. Phys. Lett. 84(13), 2226 (2004). [CrossRef]
  9. C. Grillet, C. Monat, C. L. Smith, B. J. Eggleton, D. J. Moss, S. Frédérick, D. Dalacu, P. J. Poole, J. Lapointe, G. Aers, and R. L. Williams, “Nanowire coupling to photonic crystal nanocavities for single photon sources,” Opt. Express 15(3), 1267–1276 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?id=125713 . [CrossRef] [PubMed]
  10. P. E. Barclay, K. Srinivasan, M. Borselli, and O. Painter, “Efficient input and output fiber coupling to a photonic crystal waveguide,” Opt. Lett. 29(7), 697–699 (2004). [CrossRef] [PubMed]
  11. M. Qiu, “Vertically coupled photonic crystal optical filters,” Opt. Lett. 30(12), 1476–1478 (2005). [CrossRef] [PubMed]
  12. Y. Halioua, T. J. Karle, F. Raineri, P. Monnier, I. Sagnes, G. Roelkens, D. Van Thourhout, and R. Raj, “Hybrid InP-based photonic crystal lasers on silicon on insulator wires,” Appl. Phys. Lett. 95(20), 201119 (2009). [CrossRef]
  13. K. Nozaki, H. Watanabe, and T. Baba, “Photonic crystal nanolaser monolithically integrated with passive waveguide for effective light extraction,” Appl. Phys. Lett. 92(2), 021108 (2008). [CrossRef]
  14. P. Rojo Romeo, J. Van Campenhout, P. Regreny, A. Kazmierczak, C. Seassal, X. Letartre, G. Hollinger, D. Van Thourhout, R. Baets, J. M. Fedeli, and L. Di Cioccio, “Heterogeneous integration of electrically driven microdisk based laser sources for optical interconnects and photonic ICs,” Opt. Express 14(9), 3864–3871 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=OE-14-9-3864 . [CrossRef] [PubMed]
  15. S. Boutami, B. Ben Bakir, J.-L. Leclercq, X. Letartre, P. Rojo-Romeo, M. Garrigues, P. Viktorovitch, I. Sagnes, L. Legratiet, and M. Strassner, “Highly selective and compact tunable MOEMS photonic crystal Fabry-Perot filter,” Opt. Express 14(8), 3129–3137 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-8-3129 . [CrossRef] [PubMed]
  16. C. Manolatou, M. Khan, S. Fan, P. Villeneuve, H. Haus, and J. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron. 35(9), 1322–1331 (1999). [CrossRef]
  17. S. Fan, P. Villeneuve, J. Joannopoulos, and H. Haus, “Channel drop filters in photonic crystals,” Opt. Express 3(1), 4–11 (1998). [CrossRef] [PubMed]
  18. http://alioth.debian.org/projects/tessa/
  19. http://ab-initio.mit.edu/wiki/index.php/Harminv
  20. E. Drouard, H. Hattori, C. Grillet, A. Kazmierczak, X. Letartre, P. Rojo-Romeo, and P. Viktorovitch, “Directional channel-drop filter based on a slow Bloch mode photonic crystal waveguide section,” Opt. Express 13(8), 3037–3048 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-8-3037 . [CrossRef] [PubMed]
  21. L. Ferrier, S. Boutami, F. Mandorlo, X. Letartre, P. Rojo-Romeo, P. Viktorovitch, P. Gilet, B. B. Bakir, P. Grosse, J. M. Fedeli, and A. Chelnokov, “Vertical microcavities based on photonic crystal mirrors for III-V/Si integrated microlasers,” Proceedings of SPIE, Photonics Europe, Proc. SPIE, Vol. 6989, 69890W, Photonic Crystal Materials and Devices VIII (2008).
  22. L. Ferrier, P. Rojo-Romeo, E. Drouard, X. Letatre, and P. Viktorovitch, “Slow Bloch mode confinement in 2D photonic crystals for surface operating devices,” Opt. Express 16(5), 3136–3145 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-5-3136 . [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited