OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 15 — Jul. 19, 2010
  • pp: 16206–16216

Quantum-correlated photon pair generation in chalcogenide As2S3 waveguides

C. Xiong, L. G. Helt, A. C. Judge, G. D. Marshall, M. J. Steel, J. E. Sipe, and B. J. Eggleton  »View Author Affiliations

Optics Express, Vol. 18, Issue 15, pp. 16206-16216 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (2004 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We theoretically investigate the generation of quantum-correlated photon pairs through spontaneous four-wave mixing in chalcogenide As2S3 waveguides. For reasonable pump power levels, we show that such photonic-chip-based photon-pair sources can exhibit high brightness (≈1 × 109 pairs/s) and high correlation (≈100) if the waveguide length is chosen properly or the waveguide dispersion is engineered. Such a high correlation is possible in the presence of Raman scattering because the Raman profile exhibits a low gain window at a Stokes shift of 7.4 THz, though it is constrained due to multi-pair generation. As the proposed scheme is based on photonic chip technologies, it has the potential to become an integrated platform for the implementation of on-chip quantum technologies.

© 2010 OSA

OCIS Codes
(190.4360) Nonlinear optics : Nonlinear optics, devices
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(270.4180) Quantum optics : Multiphoton processes

ToC Category:
Nonlinear Optics

Original Manuscript: April 14, 2010
Revised Manuscript: June 25, 2010
Manuscript Accepted: July 9, 2010
Published: July 16, 2010

C. Xiong, L. G. Helt, A. C. Judge, G. D. Marshall, M. J. Steel, J. E. Sipe, and B. J. Eggleton, "Quantum-correlated photon pair generation
in chalcogenide As2S3 waveguides," Opt. Express 18, 16206-16216 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Fulconis, O. Alibart, J. L. O’Brien, W. J. Wadsworth, and J. G. Rarity, “Nonclassical interference and entanglement generation using a photonic crystal fiber pair photon source,” Phys. Rev. Lett. 99(12), 120501 (2007). [CrossRef] [PubMed]
  2. A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320(5876), 646–649 (2008). [CrossRef] [PubMed]
  3. J. C. F. Matthews, A. Politi, A. Stefanov, and J. L. O’Brien, “Manipulating multi-photon entanglement in waveguide quantum circuits,” Nat. Photonics 3(6), 346–350 (2009). [CrossRef]
  4. C. K. Hong and L. Mandel, “Experimental realization of a localized one-photon state,” Phys. Rev. Lett. 56(1), 58–60 (1986). [CrossRef] [PubMed]
  5. P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995). [CrossRef] [PubMed]
  6. D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl,, M. Daniell, H. Weinfurter, and A. Zeilinger, “Experimental Quantum Teleportation,” Nature 390(6660), 575–579 (1997). [CrossRef]
  7. X. Li, J. Chen, P. Voss, J. E. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communications: Improved generation of correlated photons,” Opt. Express 12(16), 3737–3744 (2004). [CrossRef] [PubMed]
  8. J. G. Rarity, J. Fulconis, J. Duligall, W. J. Wadsworth, and P. St. J. Russell, “Photonic crystal fiber source of correlated photon pairs,” Opt. Express 13(2), 534–544 (2005). [CrossRef] [PubMed]
  9. A. R. McMillan, J. Fulconis, M. Halder, C. Xiong, J. G. Rarity, and W. J. Wadsworth, “Narrowband high-fidelity all-fibre source of heralded single photons at 1570 nm,” Opt. Express 17(8), 6156–6165 (2009). [CrossRef] [PubMed]
  10. M. Halder, J. Fulconis, B. Cemlyn, A. Clark, C. Xiong, W. J. Wadsworth, and J. G. Rarity, “Nonclassical 2-photon interference with separate intrinsically narrowband fibre sources,” Opt. Express 17(6), 4670–4676 (2009). [CrossRef] [PubMed]
  11. A. B. U’Ren, C. Silberhorn, K. Banaszek, and I. A. Walmsley, “Efficient conditional preparation of high-fidelity single photon states for fiber-optic quantum networks,” Phys. Rev. Lett. 93(9), 093601 (2004). [CrossRef] [PubMed]
  12. O. Alibart, D. B. Ostrowsky, P. Baldi, and S. Tanzilli, “High-performance guided-wave asynchronous heralded single-photon source,” Opt. Lett. 30(12), 1539–1541 (2005). [CrossRef] [PubMed]
  13. J. E. Sharping, K. F. Lee, M. A. Foster, A. C. Turner, B. S. Schmidt, M. Lipson, A. L. Gaeta, and P. Kumar, “Generation of correlated photons in nanoscale silicon waveguides,” Opt. Express 14(25), 12388–12393 (2006). [CrossRef] [PubMed]
  14. H. Takesue, Y. Tokura, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, and I. Sei-ichi, “Entanglement generation using silicon wire waveguide,” Appl. Phys. Lett. 91(20), 201108 (2007). [CrossRef]
  15. K. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S. Itabashi, “Generation of high-purity entangled photon pairs using silicon wire waveguide,” Opt. Express 16(25), 20368–20373 (2008). [CrossRef] [PubMed]
  16. H. Ken-ichi, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S. Itabashi, “Frequency and Polarization Characteristics of Correlated Photon-Pair Generation Using a Silicon Wire Waveguide,” IEEE J. Sel. Top. Quantum Electron. 16(1), 325–331 (2010). [CrossRef]
  17. R. J. Kobliska and S. A. Solin, “Temperature Dependence of the Raman Spectrum and the Depolarization Spectrum of Amorphous As2S3,” Phys. Rev. B 8(2), 756–768 (1973). [CrossRef]
  18. C. Xiong, E. Magi, F. Luan, A. Tuniz, S. Dekker, J. S. Sanghera, L. B. Shaw, I. D. Aggarwal, and B. J. Eggleton, “Characterization of picosecond pulse nonlinear propagation in chalcogenide As(2)S(3) fiber,” Appl. Opt. 48(29), 5467–5474 (2009). [CrossRef] [PubMed]
  19. V. G. Ta’eed, N. J. Baker, L. Fu, K. Finsterbusch, M. R. E. Lamont, D. J. Moss, H. C. Nguyen, B. J. Eggleton, D. Y. Choi, S. Madden, and B. Luther-Davies, “Ultrafast all-optical chalcogenide glass photonic circuits,” Opt. Express 15(15), 9205–9221 (2007). [CrossRef] [PubMed]
  20. M. R. E. Lamont, B. Luther-Davies, D. Y. Choi, S. Madden, X. Gai, and B. J. Eggleton, “Net-gain from a parametric amplifier on a chalcogenide optical chip,” Opt. Express 16(25), 20374–20381 (2008). [CrossRef] [PubMed]
  21. Z. Yang, M. Liscidini, and J. E. Sipe, “Spontaneous parametric down-conversion in waveguides: A backwards Heisenberg picture approach,” Phys. Rev. A 77(3), 033808 (2008). [CrossRef]
  22. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, Elsevier, 2007), chap. 2, 8 & 10.
  23. Q. Lin, F. Yaman, and G. P. Agrawal, “Photon-pair generation by four-wave mixing in optical fibers,” Opt. Lett. 31(9), 1286–1288 (2006). [CrossRef] [PubMed]
  24. Q. Lin, F. Yaman, and G. P. Agrawa, “Photon-pair generation in optical fibers through four-wave mixing: Role of Raman scattering and pump polarization,” Phys. Rev. A 75(2), 023803 (2007). [CrossRef]
  25. E. Brainis, “Four-photon scattering in birefringent fibers,” Phys. Rev. A 79(2), 023840 (2009). [CrossRef]
  26. Private communication with Prof, Barry Luther-Davies at the Australian National University.
  27. Q. Lin and G. P. Agrawal, “Silicon waveguides for creating quantum-correlated photon pairs,” Opt. Lett. 31(21), 3140–3142 (2006). [CrossRef] [PubMed]
  28. A. Rai, S. Das, and G. S. Agarwal, “Quantum entanglement in coupled lossy waveguides,” Opt. Express 18(6), 6241–6254 (2010). [CrossRef] [PubMed]
  29. L. G. Helt and J. E. Sipe, Quantum States of Generated Photons in Strongly Confined Lossy Waveguides (in preparation).
  30. S. D. Dyer, M. J. Stevens, B. Baek, and S. W. Nam, “High-efficiency, ultra low-noise all-fiber photon-pair source,” Opt. Express 16(13), 9966–9977 (2008). [CrossRef] [PubMed]
  31. M. R. Lamont, C. M. de Sterke, and B. J. Eggleton, “Dispersion engineering of highly nonlinear As(2)S(3) waveguides for parametric gain and wavelength conversion,” Opt. Express 15(15), 9458–9463 (2007). [CrossRef] [PubMed]
  32. C. K. Law and J. H. Eberly, “Analysis and interpretation of high transverse entanglement in optical parametric down conversion,” Phys. Rev. Lett. 92(12), 127903 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited