OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 15 — Jul. 19, 2010
  • pp: 16217–16226

High index contrast polymer waveguide platform for integrated biophotonics

Jennifer Halldorsson, Nina B. Arnfinnsdottir, Asta B. Jonsdottir, Björn Agnarsson, and Kristjan Leosson  »View Author Affiliations


Optics Express, Vol. 18, Issue 15, pp. 16217-16226 (2010)
http://dx.doi.org/10.1364/OE.18.016217


View Full Text Article

Enhanced HTML    Acrobat PDF (1416 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present detailed characterization of a unique high-index-contrast integrated optical polymer waveguide platform where the index of the cladding material is closely matched to that of water. Single-mode waveguides designed to operate across a large part of the visible spectrum have been fabricated and waveguide properties, including mode size, bend loss and evanescent coupling have been modeled using effective-index approximation, finite-element and finite-difference time domain methods. Integrated components such as directional couplers for wavelength splitting and ring resonators for refractive-index or temperature sensing have been modeled, fabricated and characterized. The waveguide platform described here is applicable to a wide range of biophotonic applications relying on evanescent-wave sensing or excitation, offering a high level of integration and functionality. The technology is biocompatible and suitable for wafer-level mass production.

© 2010 OSA

OCIS Codes
(130.0130) Integrated optics : Integrated optics
(180.2520) Microscopy : Fluorescence microscopy
(230.7390) Optical devices : Waveguides, planar
(250.5460) Optoelectronics : Polymer waveguides
(280.1415) Remote sensing and sensors : Biological sensing and sensors

ToC Category:
Integrated Optics

History
Original Manuscript: May 20, 2010
Revised Manuscript: July 1, 2010
Manuscript Accepted: July 3, 2010
Published: July 16, 2010

Virtual Issues
Vol. 5, Iss. 12 Virtual Journal for Biomedical Optics

Citation
Jennifer Halldorsson, Nina B. Arnfinnsdottir, Asta B. Jonsdottir, Björn Agnarsson, and Kristjan Leosson, "High index contrast polymer waveguide platform for integrated biophotonics," Opt. Express 18, 16217-16226 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-15-16217


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. N. Prasad, Introduction to Biophotonics (Wiley-Interscience, Hoboken, NJ, 2003).
  2. F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Domínguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 (2003). [CrossRef]
  3. A. Leung, P. M. Shankar, and R. Mutharasan, “A review of fiber-optic biosensors,” Sens. Actuators B Chem. 125(2), 688–703 (2007). [CrossRef]
  4. J. B. Jensen, L. H. Pedersen, P. E. Hoiby, L. B. Nielsen, T. P. Hansen, J. R. Folkenberg, J. Riishede, D. Noordegraaf, K. Nielsen, A. Carlsen, and A. Bjarklev, “Photonic crystal fiber based evanescent-wave sensor for detection of biomolecules in aqueous solutions,” Opt. Lett. 29(17), 1974–1976 (2004). [CrossRef] [PubMed]
  5. G. Pandraud, T. M. Koster, C. Gui, M. Dijkstra, A. Van Den Berg, and P. V. Lambeck, “Evanescent wave sensing: New features for detection in small volumes,” Sens. Actuators A Phys. 85(1-3), 158–162 (2000). [CrossRef]
  6. M. K. Khaing Oo, Y. Han, J. Kanka, S. Sukhishvili, and H. Du, “Structure fits the purpose: photonic crystal fibers for evanescent-field surface-enhanced Raman spectroscopy,” Opt. Lett. 35(4), 466–468 (2010). [CrossRef] [PubMed]
  7. R. Horváth, H. C. Pedersen, N. Skivesen, D. Selmeczi, and N. B. Larsen, “Optical waveguide sensor for on-line monitoring of bacteria,” Opt. Lett. 28(14), 1233–1235 (2003). [CrossRef] [PubMed]
  8. H. Ma, A. K. Y. Jen, and L. R. Dalton, “Polymer-Based Optical Waveguides: Materials, Processing, and Devices,” Adv. Mater. 14(19), 1339–1365 (2002). [CrossRef]
  9. C. Vieu, F. Carcenac, A. Pépin, Y. Chen, M. Mejias, A. Lebib, L. Manin-Ferlazzo, L. Couraud, and H. Launois, “Electron beam lithography: Resolution limits and applications,” Appl. Surf. Sci. 164(1-4), 111–117 (2000). [CrossRef]
  10. S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Nanoimprint lithography,” J. Vac. Sci. Technol. B 14(6), 4129–4133 (1996). [CrossRef]
  11. L. J. Guo, “Recent progress in nanoimprint technology and its applications,” J. Phys. D 37(11), R123–R141 (2004). [CrossRef]
  12. A. Piruska, I. Nikcevic, S. H. Lee, C. Ahn, W. R. Heineman, P. A. Limbach, and C. J. Seliskar, “The autofluorescence of plastic materials and chips measured under laser irradiation,” Lab Chip 5(12), 1348–1354 (2005). [CrossRef] [PubMed]
  13. J. J. Shah, J. Geist, L. E. Locascio, M. Gaitan, M. V. Rao, and W. N. Vreeland, “Surface modification of poly(methyl methacrylate) for improved adsorption of wall coating polymers for microchip electrophoresis,” Electrophoresis 27(19), 3788–3796 (2006). [CrossRef] [PubMed]
  14. C. W. Tsao, L. Hromada, J. Liu, P. Kumar, and D. L. DeVoe, “Low temperature bonding of PMMA and COC microfluidic substrates using UV/ozone surface treatment,” Lab Chip 7(4), 499–505 (2007). [CrossRef] [PubMed]
  15. J. K. Poon, L. Zhu, G. A. DeRose, and A. Yariv, “Transmission and group delay of microring coupled-resonator optical waveguides,” Opt. Lett. 31(4), 456–458 (2006). [CrossRef] [PubMed]
  16. J. K. S. Poon, L. Zhu, G. A. DeRose, and A. Yariv, “Polymer microring coupled-resonator optical waveguides,” J. Lightwave Technol. 24(4), 1843–1849 (2006). [CrossRef]
  17. B. Agnarsson, S. Ingthorsson, T. Gudjonsson, and K. Leosson, “Evanescent-wave fluorescence microscopy using symmetric planar waveguides,” Opt. Express 17(7), 5075–5082 (2009). [CrossRef] [PubMed]
  18. B. Agnarsson, J. Halldorsson, N. Arnfinnsdottir, S. Ingthorsson, T. Gudjonsson, and K. Leosson, “Fabrication of planar polymer waveguides for evanescent-wave sensing in aqueous environments,” Microelectron. Eng. 87(1), 56–61 (2010). [CrossRef]
  19. M. Hammer, 2-D multilayer waveguide mode solver effective index approximation, http://wwwhome.math.utwente.nl/~hammer/eims.html .
  20. L. A. Coldren, and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley-Interscience 1995).
  21. W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4(9), 717–719 (2007). [CrossRef] [PubMed]
  22. E. A. J. Marcatili, “Dielectric rectangular waveguide and directional coupler for integrated optics,” Bell Syst. Tech. J. 48, 2071–2102 (1969).
  23. A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J. Quantum Electron. 9(9), 919–933 (1973). [CrossRef]
  24. C. Dongre, R. Dekker, H. J. W. M. Hoekstra, M. Pollnau, R. Martinez-Vazquez, R. Osellame, G. Cerullo, R. Ramponi, R. van Weeghel, G. A. J. Besselink, and H. H. van den Vlekkert, “Fluorescence monitoring of microchip capillary electrophoresis separation with monolithically integrated waveguides,” Opt. Lett. 33(21), 2503–2505 (2008). [CrossRef] [PubMed]
  25. A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36(4), 321–322 (2000). [CrossRef]
  26. B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15(6), 998–1005 (1997). [CrossRef]
  27. C. J. Kaalund, “Critically coupled ring resonators for add-drop filtering,” Opt. Commun. 237(4-6), 357–362 (2004). [CrossRef]
  28. A. Yariv, “Critical coupling and its control in optical waveguide-ring resonator systems,” IEEE Photon. Technol. Lett. 14(4), 483–485 (2002). [CrossRef]
  29. J. C. Galas, J. Torres, M. Belotti, Q. Kou, and Y. Chen, “Microfluidic tunable dye laser with integrated mixer and ring resonator,” Appl. Phys. Lett. 86(26), 264101 (2005). [CrossRef]
  30. B. Liu, A. Shakouri, and J. E. Bowers, “Wide tunable double ring resonator coupled lasers,” IEEE Photon. Technol. Lett. 14(5), 600–602 (2002). [CrossRef]
  31. S. I. Shopova, H. Zhou, X. Fan, and P. Zhang, “Optofluidic ring resonator based dye laser,” Appl. Phys. Lett. 90(22), 221101 (2007). [CrossRef]
  32. K. Thyagarajan, M. R. Shenoy, and A. K. Ghatak, “Accurate numerical method for the calculation of bending loss in optical waveguides using a matrix approach,” Opt. Lett. 12(4), 296–298 (1987). [CrossRef] [PubMed]
  33. M. Sumetsky, “Optimization of optical ring resonator devices for sensing applications,” Opt. Lett. 32(17), 2577–2579 (2007). [CrossRef] [PubMed]
  34. A. Ramachandran, S. Wang, J. Clarke, S. J. Ja, D. Goad, L. Wald, E. M. Flood, E. Knobbe, J. V. Hryniewicz, S. T. Chu, D. Gill, W. Chen, O. King, and B. E. Little, “A universal biosensing platform based on optical micro-ring resonators,” Biosens. Bioelectron. 23(7), 939–944 (2008). [CrossRef]
  35. C. Y. Chao, W. Fung, and L. J. Guo, “Polymer microring resonators for biochemical sensing applications,” IEEE J. Sel. Top. Quantum Electron. 12(1), 134–142 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited