OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 15 — Jul. 19, 2010
  • pp: 16258–16263

Optical channel waveguides in Nd:LGS laser crystals produced by proton implantation

Yingying Ren, Yang Tan, Feng Chen, Daniel Jaque, Huaijin Zhang, Jiyang Wang, and Qingming Lu  »View Author Affiliations

Optics Express, Vol. 18, Issue 15, pp. 16258-16263 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (805 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Optical channel waveguides have been produced for the first time in Nd:LGS multi-functional laser crystals by using proton implantation. The obtained good guiding performance exhibits the well-confined modal fields in the waveguiding structures. The confocal fluorescence images of the obtained waveguides have revealed that the photoluminescence properties of the Nd3+ ions have been well-preserved in the waveguide’s active volume, which suggests promising applications as multi-functional integrated laser generation elements. These images have been also used to elucidate the spatial distribution of lattice damage and distortion caused by the implantation process, which are both mainly located at the nuclear collision region.

© 2010 OSA

OCIS Codes
(160.3380) Materials : Laser materials
(230.7380) Optical devices : Waveguides, channeled
(250.5230) Optoelectronics : Photoluminescence

ToC Category:
Optical Devices

Original Manuscript: June 1, 2010
Revised Manuscript: July 5, 2010
Manuscript Accepted: July 7, 2010
Published: July 16, 2010

Yingying Ren, Yang Tan, Feng Chen, Daniel Jaque, Huaijin Zhang, Jiyang Wang, and Qingming Lu, "Optical channel waveguides in Nd:LGS laser crystals produced by proton implantation," Opt. Express 18, 16258-16263 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Fritze and H. L. Tuller, “Langasite for high-temperature bulk acoustic wave applications,” Appl. Phys. Lett. 78(7), 976–978 (2001). [CrossRef]
  2. S. Zhang, Y. Zheng, H. Kong, J. Xin, E. Frantz, and T. R. Shrout, “Characterization of high temperature piezoelectric crystals with an ordered langasite structure,” J. Appl. Phys. 105(11), 114107 (2009). [CrossRef]
  3. J. Wang, X. Yin, R. Han, S. Zhang, H. Kong, H. Zhang, X. Hu, and M. Jiang, “Growth, properties and electrooptical applications of single crystal La3Ga5SiO14,” Opt. Mater. 23(1-2), 393–397 (2003). [CrossRef]
  4. Z. Wang, Y. Yin, and D. Yuan, “Optical spectroscopy properties of Tm ion in La3Ga5SiO14 single crystal,” Phys. Stat. Solidi A 204(2), 602–607 (2007). [CrossRef]
  5. Y. Yu, J. Wang, H. Zhang, Z. Wang, H. Yu, and M. Jiang, “Continuous wave and Q-switched laser output of laser-diode-end-pumped disordered Nd:LGS laser,” Opt. Lett. 34(4), 467–469 (2009). [CrossRef] [PubMed]
  6. I. Aramburu, I. Iparraguirre, M. A. Illarramendi, J. Azkargorta, J. Fernandez, and R. Balda, “Self-tuning in birefringent Nd:LGS laser crystal,” Opt. Mater. 27(11), 1692–1696 (2005). [CrossRef]
  7. G. Lifante, Integrated Photonics: Fundamentals (Wiley, Atrium, 2008).
  8. E. J. Murphy, Integrated optical circuits and components: Design and applications (Marcel Dekker, New York, 1999).
  9. D. Kip, “Photorefractive waveguides in oxide crystals: fabrication, properties, and applications,” Appl. Phys. B 67(2), 131–150 (1998). [CrossRef]
  10. G. I. Stegeman and C. T. Seaton, “Nonlinear integrated optics,” J. Appl. Phys. 58(12), R57 (1985). [CrossRef]
  11. J. I. Mackenzie, “Dielectric Solid-State Planar Waveguide Lasers: a review,” IEEE J. Sel. Top. Quantum Electron. 13(3), 626–637 (2007). [CrossRef]
  12. G. Della Valle, S. Taccheo, R. Osellame, A. Festa, G. Cerullo, and P. Laporta, “1.5 μm single longitudinal mode waveguide laser fabricated by femtosecond laser writing,” Opt. Express 15(6), 3190–3194 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-6-3190 . [CrossRef] [PubMed]
  13. P. D. Townsend, P. J. Chandler, and L. Zhang, Optical Effects of Ion Implantation (Cambridge Univ. Press, Cambridge, 1994).
  14. F. Chen, X. L. Wang, and K. M. Wang, “Developments of ion implanted optical waveguides in optical materials: A review,” Opt. Mater. 29(11), 1523–1542 (2007). [CrossRef]
  15. G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys. 92(11), 6477–6483 (2002). [CrossRef]
  16. F. Chen, “Photonic guiding structures in lithium niobate crystals produced by energetic ion beams,” J. Appl. Phys. 106(8), 081101 (2009). [CrossRef]
  17. J. Olivares, A. García-Navarro, G. García, A. Méndez, F. Agulló-López, A. García-Cabañes, M. Carrascosa, and O. Caballero, “Nonlinear optical waveguides generated in lithium niobate by swift-ion irradiation at ultralow fluences,” Opt. Lett. 32(17), 2587–2589 (2007). [CrossRef] [PubMed]
  18. S. M. Kostritskii and P. Moretti, “Specific behavior of refractive indices in low-dose He+-implanted LiNbO3 waveguides,” J. Appl. Phys. 101(9), 094109 (2007). [CrossRef]
  19. E. Flores-Romero, G. Vázquez, H. Márquez, R. Rangel-Rojo, J. Rickards, and R. Trejo-Luna, “Planar waveguide lasers by proton implantation in Nd:YAG crystals,” Opt. Express 12, 2264–2269 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-10-2264 . [CrossRef] [PubMed]
  20. F. Chen, Y. Tan, and D. Jaque, “Ion-implanted optical channel waveguides in neodymium-doped yttrium aluminum garnet transparent ceramics for integrated laser generation,” Opt. Lett. 34(1), 28–30 (2009). [CrossRef]
  21. S. Berneschi, G. Nunzi Conti, I. Banyasz, A. Watterich, N. Q. Khanh, M. Fried, F. Paszti, M. Brenci, S. Pelli, and G. C. Righini, “Ion beam irradiated channel waveguides in Er3+-doped tellurite glass,” Appl. Phys. Lett. 90(12), 121136 (2007). [CrossRef]
  22. A. Guarino, M. Jazbinšek, C. Herzog, R. Degl’Innocenti, G. Poberaj, and P. Günter, “Optical waveguides in Sn2P2S6 by low fluence MeV He+ ion implantation,” Opt. Express 14(6), 2344–2358 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-6-2344 . [CrossRef] [PubMed]
  23. E. J. Teo, A. A. Bettiol, M. B. Breese, P. Yang, G. Z. Mashanovich, W. R. Headley, G. T. Reed, and D. J. Blackwood, “Three-dimensional control of optical waveguide fabrication in silicon,” Opt. Express 16(2), 573–578 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-2-573 . [CrossRef] [PubMed]
  24. T. C. Sum, A. A. Bettiol, C. Florea, and F. Watt, “Proton Beam Writing of Poly-methylmethacrylate Buried Channel Waveguides,” J. Lightwave Technol. 24(10), 3803–3809 (2006). [CrossRef]
  25. N.-N. Dong, F. Chen, and D. Jaque, “Carbon ion implanted Nd:MgO:LiNbO3 optical channel waveguides: an intermediate step between light and heavy ion implanted waveguides,” Opt. Express 18(6), 5951–5956 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-6-5951 . [CrossRef] [PubMed]
  26. D. Jaque and F. Chen, “High resolution fluorescence imaging of damage regions in H+ ion implanted Nd:MgO:LiNbO3 channel waveguides,” Appl. Phys. Lett. 94(1), 011109 (2009). [CrossRef]
  27. D. Jaque, F. Chen, and Y. Tan, “Scanning confocal fluorescence imaging and micro-Raman investigations of oxygen implanted channel waveguides in Nd:MgO:LiNbO3,” Appl. Phys. Lett. 92(16), 161908 (2008). [CrossRef]
  28. J. Bohm, R. B. Heimann, M. Hengst, R. Roewer, and J. Schindler, “Czochralski growth and characterization of piezoelectric single crystals with langasite structure: La3Ga5SiO14 (LGS), La3Ga5.5Nb0.5O14 (LGN), and La3Ga5.5Ta0.5O14 (LGT): Part I,” J, Cryt. Growth 204(1-2), 128–136 (1999). [CrossRef]
  29. F. Chen, “Construction of Two-Dimensional Waveguides in Insulating Optical Materials by Means of Ion Beam Implantation for Photonic Applications: Fabrication Methods and Research Progress,” Crit. Rev. Solid State Mater. Sci. 33(3), 165–182 (2008). [CrossRef]
  30. P. J. Chandler and F. L. Lama, “A new approach to the determination of planar waveguide profiles by means of a non-stationary mode index calculation,” Opt. Acta (Lond.) 33, 127–142 (1986).
  31. R. Regener and W. Sohler, “Loss in low-finesse Ti:LiNbO3 optical waveguide resonators,” Appl. Phys. B 36(3), 143–147 (1985). [CrossRef]
  32. D. Yevick and W. Bardyszewski, “Correspondence of variational finite-difference (relaxation) and imaginary-distance propagation methods for modal analysis,” Opt. Lett. 17(5), 329–330 (1992). [CrossRef] [PubMed]
  33. Y. Tan and F. Chen, “Proton-implanted optical channel waveguides in Nd:YAG laser ceramics,” J. Phys. D 43(7), 075105 (2010). [CrossRef]
  34. R. M. Roth, D. Djukic, Y. S. Lee, R. Osgood, S. Bakhru, B. Laulicht, K. Dunn, H. Bakhru, L. Wu, and M. Huang, “Compositional and structural changes in LiNbO3 following deep He+ ion implantation for film exfoliation,” Appl. Phys. Lett. 89(11), 112906 (2006). [CrossRef]
  35. A. Ródenas, D. Jaque, G. A. Torchia, C. Mendez, I. Arias, L. Roso, P. Moreno, and F. Agulló-Rueda, “Femtosecond laser induced micromodifications in Nd:SBN crystals: Amorphization and luminescence inhibition,” J. Appl. Phys. 100(11), 113517 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited