OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 16 — Aug. 2, 2010
  • pp: 16309–16319

Improvement of delay-bandwidth product in photonic crystal slow-light waveguides

Ran Hao, Eric Cassan, Xavier Le Roux, Dingshan Gao, Van Do Khanh, Laurent Vivien, Delphine Marris-Morini, and Xinliang Zhang  »View Author Affiliations

Optics Express, Vol. 18, Issue 16, pp. 16309-16319 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1138 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report new results about the improvement of delay-bandwidth product in photonic crystal slow light waveguides. Previous studies have obtained large delay-bandwidth product at the price of small average group index. It is pointed out here that the radius and the distance between the two boundary rows of holes have a key contribution for delay-bandwidth product. We show the possibility of improving this factor of merit meanwhile maintaining the same group index. We succeed in improving normal delay-bandwidth product from 0.15 to 0.35, keeping at the same time the group index unchanged at high value of 90. This optimization approach may be applicable for previous flat band slow light devices.

© 2010 OSA

OCIS Codes
(200.4490) Optics in computing : Optical buffers
(130.5296) Integrated optics : Photonic crystal waveguides
(230.5298) Optical devices : Photonic crystals

ToC Category:
Photonic Crystals

Original Manuscript: May 20, 2010
Revised Manuscript: July 1, 2010
Manuscript Accepted: July 4, 2010
Published: July 19, 2010

Ran Hao, Eric Cassan, Xavier Le Roux, Dingshan Gao, Van Do Khanh, Laurent Vivien, Delphine Marris-Morini, and Xinliang Zhang, "Improvement of delay-bandwidth product in photonic crystal slow-light waveguides," Opt. Express 18, 16309-16319 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. F. Krauss, “Why do we need slow light?” Nat. Photonics 2(8), 448–450 (2008). [CrossRef]
  2. Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005). [CrossRef] [PubMed]
  3. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87(25), 253902 (2001). [CrossRef] [PubMed]
  4. T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2(8), 465–473 (2008). [CrossRef]
  5. A. Säynätjoki, M. Mulot, J. Ahopelto, and H. Lipsanen, “Dispersion engineering of photonic crystal waveguides with ring-shaped holes,” Opt. Express 15(13), 8323–8328 (2007). [CrossRef] [PubMed]
  6. J. Hou, D. Gao, H. Wu, R. Hao, and Z. Zhou, “Flat Band Slow Light in Symmetric Line Defect Photonic Crystals Waveguide,” IEEE Photon. Technol. Lett. 21(20), 1571 (2009). [CrossRef]
  7. R. Hao, E. Cassan, H. Kurt, X. Le Roux, D. Marris-Morini, L. Vivien, H. Wu, Z. Zhou, and X. Zhang, “Novel slow light waveguide with controllable delay-bandwidth product and utra-low dispersion,” Opt. Express 18(6), 5942–5950 (2010). [CrossRef] [PubMed]
  8. L. H. Frandsen, A. V. Lavrinenko, J. Fage-Pedersen, and P. I. Borel, “Photonic crystal waveguides with semi-slow light and tailored dispersion properties,” Opt. Express 14(20), 9444–9450 (2006). [CrossRef] [PubMed]
  9. D. Mori, S. Kubo, H. Sasaki, and T. Baba, “Experimental demonstration of wideband dispersion-compensated slow light by a chirped photonic crystal directional coupler,” Opt. Express 15(9), 5264–5270 (2007). [CrossRef] [PubMed]
  10. T. Baba, T. Kawaaski, H. Sasaki, J. Adachi, and D. Mori, “Large delay-bandwidth product and tuning of slow light pulse in photonic crystal coupled waveguide,” Opt. Express 16(12), 9245–9253 (2008). [CrossRef] [PubMed]
  11. J. Jágerská, N. Le Thomas, V. Zabelin, R. Houdré, W. Bogaerts, P. Dumon, and R. Baets, “Experimental observation of slow mode dispersion in photonic crystal coupled-cavity waveguides,” Opt. Lett. 34(3), 359–361 (2009). [CrossRef] [PubMed]
  12. J. Ma and C. Jiang, “Demonstration of ultraslow modes in asymmetric line-defect photonic crystal waveguides,” IEEE Photon. Technol. Lett. 20(14), 1237–1239 (2008). [CrossRef]
  13. P. Lalanne, “Wave propagation in slow-light photonic crystal waveguides,” presented at Photonics Europe (invited paper), 7713–19, Belgium, Apri. 2010.
  14. S. T. Lim, C. E. Png, E. A. Ong, and Y. L. Ang, “Single mode, polarization-independent submicron silicon waveguides based on geometrical adjustments,” Opt. Express 15(18), 11061–11072 (2007). [CrossRef] [PubMed]
  15. K. Yamada, H. Morita, A. Shinya, and M. Notomi, “Improved line-defect structures for photonic-crystal waveguides with high group velocity,” Opt. Commun. 198(4-6), 395–402 (2001). [CrossRef]
  16. J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16(9), 6227–6232 (2008). [CrossRef] [PubMed]
  17. Y. Hamachi, S. Kubo, and T. Baba, “Slow light with low dispersion and nonlinear enhancement in a lattice-shifted photonic crystal waveguide,” Opt. Lett. 34(7), 1072–1074 (2009). [CrossRef] [PubMed]
  18. E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, “Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs,” Phys. Rev. B 72(16), 161318 (2005). [CrossRef]
  19. S. G. Johnson, and J. D. Joannopoulos, MIT Photonic Bands, Available: http://ab-initio.mit.edu/wiki/index.php/ MIT_Photonic_Bands.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited