OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 16 — Aug. 2, 2010
  • pp: 16327–16334

Optical gain, spontaneous and stimulated emission of surface plasmon polaritons in confined plasmonic waveguide

G. Colas des Francs, P. Bramant, J. Grandidier, A. Bouhelier, J.-C. Weeber, and A. Dereux  »View Author Affiliations

Optics Express, Vol. 18, Issue 16, pp. 16327-16334 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (930 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We develop a theoretical model to compute the local density of states in a confined plasmonic waveguide. Based on this model, we derive a simple formula with a clear physical interpretation for the lifetime modification of emitters embedded in the waveguide. The gain distribution within the active medium is then computed following the formalism developed in a recent work [Phys. Rev. B 78, 161401 (2008)], by taking rigorously into account the pump irradiance and emitters lifetime modifications in the system. We finally apply this formalism to describe gain-assisted propagation in a dielectric-loaded surface plasmon polariton waveguide.

© 2010 Optical Society of America

OCIS Codes
(020.5580) Atomic and molecular physics : Quantum electrodynamics
(240.6680) Optics at surfaces : Surface plasmons
(230.4480) Optical devices : Optical amplifiers

ToC Category:
Optics at Surfaces

Original Manuscript: June 8, 2010
Revised Manuscript: July 6, 2010
Manuscript Accepted: July 7, 2010
Published: July 19, 2010

G. Colas des Francs, P. Bramant, J. Grandidier, A. Bouhelier, J.-C. Weeber, and A. Dereux, "Optical gain, spontaneous and stimulated emission of surface plasmon polaritons in confined plasmonic waveguide," Opt. Express 18, 16327-16334 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. K. Gramotnev, and S. I. Bozhelvonyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010). [CrossRef]
  2. S. I. Bozhevolnyi, T. Nikolajsen, and K. Leosson, “Integrated power monitor for long-range surface plasmon polaritons,” Opt. Commun. 255, 51–56 (2005). [CrossRef]
  3. J. Gosciniak, S. I. Bozhevolnyi, T. B. Andersen, V. S. Volkov, J. Kjelstrup-Hansen, L. Markey, and A. Dereux, “Thermo-optic control of dielectric-loaded plasmonic waveguide components,” Opt. Express 18, 1207–1216 (2010). [CrossRef] [PubMed]
  4. J. Grandidier, G. Colas des Francs, S. Massenot, A. Bouhelier, L. Markey, J. Weeber, C. Finot, and A. Dereux, “Gain assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett. 9, 2935–2939 (2009). [CrossRef] [PubMed]
  5. R. Oulton, V. Sorger, T. Zentgraf, R. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009). [CrossRef] [PubMed]
  6. I. De Leon, and P. Berini, “Amplification of long-range surface plasmons by a dipolar gain medium,” Nat. Photonics, (2010). [CrossRef]
  7. M. C. Gather, K. Meerholz, N. Danz, and K. Leosson, “Net optical gain in a plasmonic waveguide embedded in a fluorescent polymer,” Nat. Photonics, (2010). [CrossRef]
  8. J. Grandidier, G. Colas des Francs, S. Massenot, A. Bouhelier, J.-C. Weeber, L. Markey, and A. Dereux, “Leakage radiation microscopy of surface plasmon coupled emission: investigation of gain assisted propagation in an integrated plasmonic waveguide,” J. Microsc., (2010). [CrossRef] [PubMed]
  9. A. Krishnan, S. P. Frisbie, L. Grave de Peralta, and A. A. Bernussi, “Plasmon stimulated emission in arrays of bimetallic structures coated with dye-doped dielectric,” Appl. Phys. Lett. 96, 111104 (2010). [CrossRef]
  10. P. M. Bolger, W. Dickson, A. V. Krasavin, L. Liebscher, S. G. Hickey, D. V. Skryabin, and A. V. Zayats, “Amplified spontaneous emission of surface plasmon polaritons and limitations on the increase of their propagation length,” Opt. Lett. 35, 1197–1199 (2010). [CrossRef] [PubMed]
  11. I. De Leon, and P. Berini, “Theory of surface plasmon-polariton amplification in planar structures incorporating dipolar gain media,” Phys. Rev. B 78, 161401 (2008). [CrossRef]
  12. I. De Leon, and P. Berini, “Modeling surface plasmon-polariton gain in planar metallic structures,” Opt. Express 17, 20191–20202 (2009). [CrossRef] [PubMed]
  13. I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Surface plasmon-coupled emission with gold films,” J. Phys. Chem. B 108, 12568–12574 (2004). [CrossRef] [PubMed]
  14. G. Winter, S. Wedge, and W. L. Barnes, “Can lasing at visible wavelengths be achieved using the low-loss long range surface plasmon-polariton mode?” N. J. Phys. 8, 125 (2006). [CrossRef]
  15. J. P. Hoogenboom, G. Sanchez-Mosteiro, G. Colas des Francs, D. Heinis, G. Legay, A. Dereux, and N. F. van Hulst, “The single molecule probe: nanoscale vectorial mapping of photonic mode density in a metal nanocavity,” Nano Lett. 9, 1189–1195 (2009). [CrossRef] [PubMed]
  16. G. Colas des Francs, J. Grandidier, S. Massenot, A. Bouhelier, J. Weeber, and A. Dereux, “Integrated plasmonic waveguides: a mode solver based on density of states formulation,” Phys. Rev. B 80, 115419 (2009). [CrossRef]
  17. D. P. Fussell, R. C. McPhedran, and C. Martijn de Sterke, “Three-dimensional Green’s tensor, local density of states, and spontaneous emission in finite two-dimensional photonic crystals composed of cylinders,” Phys. Rev. E 70, 066608 (2004). [CrossRef]
  18. Y. Chen, T. R. Nielsen, N. Gregersen, P. Lodahl, and J. Mork, “Finite-element modeling of spontaneous emission of a quantum emitter at nanoscale proximity to plasmonic waveguides,” Phys. Rev. B 81, 125431 (2010). [CrossRef]
  19. W. Barnes, “Fluorescence near interfaces: the role of photonic mode density,” J. Mod. Opt. 45, 661–699 (1998). [CrossRef]
  20. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer Verlag, 1986).
  21. E. Hecht, Optics (1987).
  22. D. Pacifici, H. J. Lezec, and H. A. Atwater, “All-optical modulation by plasmonic excitation of CdSe quantum dots,” Nat. Photonics 1, 402–406 (2007). [CrossRef]
  23. A. Marini, A. V. Gorbach, D. V. Skryabin, and A. V. Zayats, “Amplification of surface plasmon polaritons in the presence of nonlinearity and spectral signatures of threshold crossover,” Opt. Lett. 34, 2864–2866 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited