OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 16 — Aug. 2, 2010
  • pp: 16353–16359

Geometry-dependent terahertz emission of silicon nanowires

Gyeong Bok Jung, Yong Jae Cho, Yoon Myung, Han Sung Kim, Young Suk Seo, Jeunghee Park, and Chul Kang  »View Author Affiliations

Optics Express, Vol. 18, Issue 16, pp. 16353-16359 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1282 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



THz emission was observed from the vertically aligned silicon nanowire (Si NW) arrays, upon the excitation using a fs Ti-sapphire laser pulse (800 nm). The Si NWs (length = 0.3 ~9 μm) were synthesized by the chemical etching of n-type silicon substrates. The THz emission exhibits significant length dependence; the intensity increases sharply up to a length of 3 μm and then almost saturates. Their efficient THz emission is attributed to strong local field enhancement by coherent surface plasmons, with distinctive geometry dependence.

© 2010 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(300.6495) Spectroscopy : Spectroscopy, teraherz

ToC Category:
Optics at Surfaces

Original Manuscript: April 30, 2010
Revised Manuscript: June 24, 2010
Manuscript Accepted: June 29, 2010
Published: July 20, 2010

Gyeong Bok Jung, Yong Jae Cho, Yoon Myung, Han Sung Kim, Young Suk Seo, Jeunghee Park, and Chul Kang, "Geometry-dependent terahertz emission of silicon nanowires," Opt. Express 18, 16353-16359 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Hu, T. W. Odom, and C. M. Lieber, “Chemistry and Physics in One Dimension: Synthesis and Properties of Nanowires and Nanotubes,” Acc. Chem. Res. 32(5), 435–445 (1999). [CrossRef]
  2. Y. Huang, X. Duan, Y. Cui, L. J. Lauhon, K.-H. Kim, and C. M. Lieber, “Logic gates and computation from assembled nanowire building blocks,” Science 294(5545), 1313–1317 (2001). [CrossRef] [PubMed]
  3. M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, “Growth of nanowire superlattice structures for nanoscale photonics and electronics,” Nature 415(6872), 617–620 (2002). [CrossRef] [PubMed]
  4. Z. M. Wang, In Lecture notes in nanoscale science and technology (Springer-Verlag, New York, 2008), Vol. 3, p175.
  5. D. Seletskiy, M. P. Hasselbeck, M. Sheik-Bahae, J. G. Cederberg, L. C. Chuang, M. Moewe, and C. Chang-Hasnain, “Observation of THz emission from InAs nanowires,” in Proceedings of CLEO/QELS CMM2 (2008).
  6. S. He, X. Chen, X. Wu, G. Wang, and F. J. Zhao, “Enhanced Terahertz Emission From ZnSe Nono-Grain Surface,” J. Lightwave Technol. 26(11), 1519–1523 (2008). [CrossRef]
  7. M. Reid, I. V. Cravetchi, R. Fedosejevs, I. M. Tiginyanu, and L. Sirbu, “Enhanced terahertz emission from porous InP (111) membranes,” Appl. Phys. Lett. 86(2), 021904 (2005). [CrossRef]
  8. K.-Q. Peng, Y.-J. Yan, S.-P. Gao, and J. Zhu, “Synthesis of Large-Area Silicon nanowire Arrays via Self-Assembling Nanoelectrochemistry,” Adv. Mater. 14(16), 1164–1167 (2002). [CrossRef]
  9. K. Peng, M. Zhang, A. Lu, N.-B. Wong, R. Zhang, and S.-T. Lee, “Ordered silicon nanowire arrays via nanosphere lithography and metal-induced etching,” Appl. Phys. Lett. 90(16), 163123 (2007). [CrossRef]
  10. T. Shimizu, T. Xie, J. Nishikawa, S. Shingubara, S. Senz, and U. Gosele, “Synthesis of Vertical High-Density Epitaxial Si(100) Nanowire Array on a Si(100) Substrate Using an Anodic Aluminum Oxide Template,” Adv. Mater. 19(7), 917–920 (2007). [CrossRef]
  11. Y. J. Hwang, A. Boukai, and P. Yang, “High density n-Si/n-TiO2 core/shell nanowire arrays with enhanced photoactivity,” Nano Lett. 9(1), 410–415 (2009). [CrossRef]
  12. V. Sivakov, G. Andrä, A. Gawlik, A. Berger, J. Plentz, F. Falk, and S. H. Christiansen, “Silicon nanowire-based solar cells on glass: synthesis, optical properties, and cell parameters,” Nano Lett. 9(4), 1549–1554 (2009). [CrossRef] [PubMed]
  13. E. A. Dalchiele, F. Martin, D. Leinen, R. E. Marotti, and J. R. Ramos-Barrado, “Single-Crystalline Silicon Nanowire Array-Based Photoelectrochemical Cells,” J. Electrochem. Soc. 156(5), K77–K81 (2009). [CrossRef]
  14. K. S. Brammer, C. Choi, S. Oh, C. J. Cobb, L. S. Connelly, M. Loya, S. D. Kong, and S. Jin, “Antibiofouling, sustained antibiotic release by Si nanowire templates,” Nano Lett. 9(10), 3570–3574 (2009). [CrossRef] [PubMed]
  15. S. Koynov, M. S. Brandt, and M. Stutzmann, “Black nonreflecting silicon surfaces for solar cells,” Appl. Phys. Lett. 88(20), 203107 (2006). [CrossRef]
  16. J. Yoo, I. Parm, U. Gangopadhyay, K. Kim, S. Dhungel, D. Mangalaraj, and J. Yi, “Black silicon layer formation for application in solar cells,” Sol. Energy Mater. Sol. Cells 90(18-19), 3085–3093 (2006). [CrossRef]
  17. P. Hoyer, M. Theuer, R. Beigang, and E.-B. Kley, “Terahertz emission from black silicon,” Appl. Phys. Lett. 93(9), 091106 (2008). [CrossRef]
  18. X. C. Zhang and D. H. Auston, “Optoelectronic measurement of semiconductor surfaces and interfaces with femtosecond optics,” J. Appl. Phys. 71(1), 326–338 (1992). [CrossRef]
  19. S. Kono, P. Gu, M. Tani, and K. Sakai, “Temperature dependence of terahertz radiation from n-type InSb and n-type InAs surfaces,” Appl. Phys. B 71, 901–904 (2000).
  20. R. Kersting, J. N. Heyman, G. Strasser, and K. Unterrainer, “Coherent plasmon in n-doped GaAs,” Phys. Rev. B 58(8), 4553–4559 (1998). [CrossRef]
  21. Q. Xiong, G. Chen, H. R. Gutierrez, and P. C. Eklund, “Raman scattering studies of individual polar semiconducting nanowires: phonon splitting and antenna effects,” Appl. Phys., A Mater. Sci. Process. 85(3), 299–305 (2006). [CrossRef]
  22. M. P. Hasselbeck, D. Seletskiy, L. R. Dawson, and M. Sheik-Bahae, “Direct observation of Landau damping in a solid state plasma,” Phys. Status Solidi 5(1c), 253–256 (2008). [CrossRef]
  23. K. Sakai, In Terahertz Optoelectroninc, Topics Appl. Phys. 97 (Springer-Verlag, Berlin Heidelberg, 2005), p. 63.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited