OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 16 — Aug. 2, 2010
  • pp: 16370–16378

Bandwidth enhancement of injection-locked distributed reflector lasers with wirelike active regions

SeungHun Lee, Devang Parekh, Takahiko Shindo, Weijian Yang, Peng Guo, Daisuke Takahashi, Nobuhiko Nishiyama, Connie J. Chang-Hasnain, and Shigehisa Arai  »View Author Affiliations


Optics Express, Vol. 18, Issue 16, pp. 16370-16378 (2010)
http://dx.doi.org/10.1364/OE.18.016370


View Full Text Article

Enhanced HTML    Acrobat PDF (1338 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The modulation bandwidth enhancement of distributed reflector (DR) lasers with wirelike active regions utilizing optical injection locking is demonstrated both theoretically and experimentally. By the rate equation analysis, it is shown that DR lasers with wirelike active regions realize a low optical injection power and a large bandwidth enhancement under small operation currents. Experimentally, the small-signal bandwidth is increased to >15 GHz at a bias current of 5 mA, which is 4 times smaller than that for conventional edge-emitting lasers. A large signal modulation at 10 Gbps is also performed at the same bias current of 5 mA and voltage swing of 0.4 Vpp, and error-free detection was confirmed under the low-power conditions.

© 2010 OSA

OCIS Codes
(140.3520) Lasers and laser optics : Lasers, injection-locked
(140.5960) Lasers and laser optics : Semiconductor lasers
(250.5590) Optoelectronics : Quantum-well, -wire and -dot devices

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: June 2, 2010
Revised Manuscript: July 8, 2010
Manuscript Accepted: July 13, 2010
Published: July 20, 2010

Citation
SeungHun Lee, Devang Parekh, Takahiko Shindo, Weijian Yang, Peng Guo, Daisuke Takahashi, Nobuhiko Nishiyama, Connie J. Chang-Hasnain, and Shigehisa Arai, "Bandwidth enhancement of injection-locked distributed reflector lasers with wirelike active regions," Opt. Express 18, 16370-16378 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-16-16370


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. Hayashi, T. Mukaihara, N. Hatori, N. Ohnoki, A. Matsutani, F. Koyama, and K. Iga, “Record low-threshold index-guided InGaAs/GaAlAs vertical-cavity surface-emitting laser with a native oxide confinement structure,” Electron. Lett. 31(7), 560–562 (1995). [CrossRef]
  2. N. Nishiyama, C. Caneau, G. Guryanov, X. S. Liu, M. Hu, and C. E. Zah, “High efficiency long wavelength VCSEL on InP grown by MOCVD,” Electron. Lett. 39(5), 437–439 (2003). [CrossRef]
  3. N. Nishiyama, C. Caneau, B. Hall, G. Guryanov, M. Hu, X. Liu, M. J. Li, R. Bhat, and C.-E. Zah, “Long-wavelength vertical-cavity surface-emitting lasers on InP with lattice matched AlGaInAs–InP DBR grown by MOCVD,” IEEE J. Sel. Top. Quantum Electron. 11(5), 990–998 (2005). [CrossRef]
  4. N. Nunoya, M. Nakamura, H. Yasumoto, M. Morshed, K. Fukuda, S. Tamura, and S. Arai, “Sub-milliampere operation of 1.55 μm wavelength high index-coupled buried heterostructure distributed feedback lasers,” Electron. Lett. 36(14), 1213–1214 (2000). [CrossRef]
  5. N. Nunoya, M. Nakamura, M. Morshed, S. Tamura, and S. Arai, “High-performance 1.55-μm wavelength GaInAsP-InP distributed-feedback lasers with wirelike active regions,” IEEE J. Sel. Top. Quantum Electron. 7(2), 249–258 (2001). [CrossRef]
  6. M. Fujita, R. Ushigome, and T. Baba, “Continuous wave lasing in GaInAsP microdisk injection laser with threshold current of 40 μA,” Electron. Lett. 36(9), 790–791 (2000). [CrossRef]
  7. H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305(5689), 1444–1447 (2004). [CrossRef] [PubMed]
  8. T. Okamoto, N. Nunoya, Y. Onodera, T. Yamazaki, S. Tamura, and S. Arai, “Optically pumped membrane BH-DFB lasers for low-threshold and single-mode operation,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1361–1366 (2003). [CrossRef]
  9. S. Sakamoto, H. Naitoh, M. Ohtake, Y. Nishimoto, S. Tamura, T. Maruyama, N. Nishiyama, and S. Arai, “Strongly index-coupled membrane BH-DFB lasers with surface corrugation grating,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1135–1141 (2007). [CrossRef]
  10. J. I. Shim, K. Komori, S. Arai, I. Arima, Y. Suematsu, and R. Somchai, “Lasing characteristics of 1.5 μm GaInAsP-InP SCH-BIG-DR lasers,” IEEE J. Quantum Electron. 27(6), 1736–1745 (1991). [CrossRef]
  11. K. Ohira, T. Murayama, H. Yagi, S. Tamura, and S. Arai, “Distributed reflector laser integrated with active and passive grating sections using lateral quantum confinement effect,” Jpn. J. Appl. Phys. 42(Part 2, No. 8A8A), L921–L923 (2003). [CrossRef]
  12. K. Ohira, T. Murayama, S. Tamura, and S. Arai, “Low-threshold and high-efficiency operation of distributed reflector lasers with width-modulated wirelike active regions,” IEEE J. Sel. Top. Quantum Electron. 11(5), 1162–1168 (2005). [CrossRef]
  13. S. M. Ullah, R. Suemitsu, S. Lee, M. Otake, N. Nishiyama, and S. Arai, “Low-threshold-current operation of high-mesa stripe distributed reflector laser emitting at 1540 nm,” Jpn. J. Appl. Phys. 46(44), L1068–L1070 (2007). [CrossRef]
  14. S. M. Ullah, S. Lee, R. Suemitsu, N. Nishiyama, and S. Arai, “GaInAsP/InP distributed reflector lasers and integration of front power monitor by using lateral quantum confinement effect,” Jpn. J. Appl. Phys. 47(6), 4558–4565 (2008). [CrossRef]
  15. T. Shindo, S. Lee, D. Takahashi, N. Tajima, N. Nishiyama, and S. Arai, “Low-threshold and high-efficiency operation of distributed reflector laser with wirelike active regions,” IEEE Photon. Technol. Lett. 21(19), 1414–1416 (2009). [CrossRef]
  16. L. Chrostowski, X. Zhao, and C. J. Chang-Hasnain, “Microwave performance of optically injection-locked VCSELs,” IEEE Trans. Microw. Theory Tech. 54(2), 788–796 (2006). [CrossRef]
  17. E. K. Lau, X. Zhao, H.-K. Sung, D. Parekh, C. Chang-Hasnain, and M. C. Wu, “Strong optical injection-locked semiconductor lasers demonstrating > 100-GHz resonance frequencies and 80-GHz intrinsic bandwidths,” Opt. Express 16(9), 6609–6618 (2008). [CrossRef] [PubMed]
  18. L. Chrostowski, C.-H. Chang, and C. Chang-Hasnain, “Reduction of relative intensity noise and improvement of spur-free dynamic range of an injection locked VCSEL,” Proc. IEEE LEOS Annu. Meeting Conf. 2, 706–707 (2003).
  19. X. Zhao, B. Zhang, L. Christen, D. Parekh, W. Hofmann, M. C. Amann, F. Koyama, A. E. Willner, and C. J. Chang-Hasnain, “Greatly increased fiber transmission distance with an optically injection-locked vertical-cavity surface-emitting laser,” Opt. Express 17(16), 13785–13791 (2009). [CrossRef] [PubMed]
  20. D. Parekh, B. Zhang, X. Zhao, Y. Yu, W. Hofmann, M. C. Amann, A. E. Willner, and C. J. Chang-Hasnain, “90-km Single-Mode Fiber Transmission of 10-Gb/s Multimode VCSELs under Optical Injection Locking, ” in Proc. OFC/NFOEC, 2009, paper OTuK7.
  21. Q. T. Nguyen, L. Bramerie, G. Girault, O. Vaudel, P. Besnard, J.-C. Simon, A. Shen, G.-H. Duan, and C. Kazmierski, “16x2.5 Gbit/s Downstream Transmission in Colorless WDM-PON based on Injection-Locked Fabry-Perot Laser Diode using a single Quantum Dash mode-locked Fabry-Perot laser as multi-wavelength seeding source,” in Proc. OFC/NFOEC, 2009, paper OThA3.
  22. A. Murakami, K. Kawashima, and K. Atsuki, “Cavity resonance shift and bandwidth enhancement in semiconductor lasers with strong light injection,” IEEE J. Quantum Electron. 39(10), 1196–1204 (2003). [CrossRef]
  23. E. K. Lau, H.-K. Sung, and M. C. Wu, “Frequency response enhancement of optical injection-locked lasers,” IEEE J. Quantum Electron. 44(1), 90–99 (2008). [CrossRef]
  24. R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. 16(3), 347–355 (1980). [CrossRef]
  25. A. Champagne, R. Maciejko, D. M. Adams, G. Pakulski, B. Takasaki, and T. Makino, “Global and local effects in gain-coupled multiple-quantum-well DFB lasers,” IEEE J. Quantum Electron. 35(10), 1390–1401 (1999). [CrossRef]
  26. N. B. Terry, N. A. Naderi, M. Pochet, A. J. Moscho, L. F. Lester, and V. Kovanis, “Bandwidth enhancement of injection-locked 1.3 μm quantum-dot DFB laser,” Electron. Lett. 44(15), 904–905 (2008). [CrossRef]
  27. W. Yang, P. Guo, D. Parekh, W. Hofmann, M. C. Amann, and C. J. Chang-Hasnain, “Physical Origin of Data Pattern Inversion in Optical Injection-Locked VCSELs,” in Frontiers in Optics, OSA Technical Digest Series, (Optical Society of American, 2009), paper FTuW2.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited