OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 16 — Aug. 2, 2010
  • pp: 16379–16386

Surface plasmon resonance enhanced photoconductivity in Cu nanoparticle films

Ki Youl Yang, Kyung Cheol Choi, Il-Suk Kang, and Chi Won Ahn  »View Author Affiliations

Optics Express, Vol. 18, Issue 16, pp. 16379-16386 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (955 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We describe an all-electrical plasmon detection based on the near field coupling between plasmons and percolating electrons. It is the technique to electrically detect the local field enhancement from randomly distributed Cu nanoparticles coupled to a plasmon resonance. In addition, we revealed that plasmon-sensitivity is maximized at the percolation threshold, the minimum Cu particle surface coverage which can make the percolation path through the particles. Our detectors have a simple structure for easy fabrication and a high level of sensitivity to plasmon resonance.

© 2010 OSA

OCIS Codes
(230.2090) Optical devices : Electro-optical devices
(240.6680) Optics at surfaces : Surface plasmons
(260.5150) Physical optics : Photoconductivity
(280.4788) Remote sensing and sensors : Optical sensing and sensors
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Optics at Surfaces

Original Manuscript: June 8, 2010
Revised Manuscript: July 8, 2010
Manuscript Accepted: July 8, 2010
Published: July 20, 2010

Ki Youl Yang, Kyung Cheol Choi, Il-Suk Kang, and Chi Won Ahn, "Surface plasmon resonance enhanced photoconductivity in Cu nanoparticle films," Opt. Express 18, 16379-16386 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. E. Franke, T. J. Koplin, and U. Simon;,“Metal and metal oxide nanoparticles in chemiresistors: does the nanoscale matter?” Small 2(1), 36–50 (2006). [CrossRef] [PubMed]
  2. S. J. van der Molen, J. Liao, T. Kudernac, J. S. Agustsson, L. Bernard, M. Calame, B. J. van Wees, B. L. Feringa, and C. Schönenberger, “Light-controlled conductance switching of ordered metal-molecule-metal devices,” Nano Lett. 9(1), 76–80 (2009). [CrossRef]
  3. T. Vossmeyer, B. Guse, I. Besnard, R. E. Bauer, K. Müllen, and A. Yasuda, “Gold Nanoparticle/Polyphenylene Dendrimer Composite Films: Preparation and Vapor-Sensing Properties,” Adv. Mater. 14(3), 238–242 (2002). [CrossRef]
  4. N. Krasteva, I. Besnard, B. Guse, R. E. Bauer, K. Mullen, A. Yasuda, and T. Vossmeyer, “Self-Assembled Gold Nanoparticle/Dendrimer Composite Films for Vapor Sensing Applications,” Nano Lett. 2(5), 551–555 (2002). [CrossRef]
  5. P. Zhou, G. J. You, Y. G. Li, T. Han, J. Li, S. Y. Wang, L. Y. Chen, Y. Liu, and S. X. Qian, “Linear and ultrafast nonlinear optical response of Ag:Bi2O3 composite films,” Appl. Phys. Lett. 83(19), 3876–3878 (2003). [CrossRef]
  6. Y. Hamanaka, K. Fukuta, A. Nakamura, L. M. Liz-Marzan, and P. Mulvaney, “Enhancement of third-order nonlinear optical susceptibilities in silica-capped Au nanoparticle films with very high concentrations,” Appl. Phys. Lett. 84(24), 4938–4940 (2004). [CrossRef]
  7. R. Parthasarathy, X.-M. Lin, and H. M. Jaeger, “Electronic Transport in Metal Nanocrystal Arrays: The Effect of Structural Disorder on Scaling Behavior,” Phys. Rev. Lett. 87(18), 186807 (2001). [CrossRef]
  8. M.-S. Hu, H.-L. Chen, C.-H. Shen, L.-S. Hong, B.-R. Huang, K.-H. Chen, and L.-C. Chen, “Photosensitive gold-nanoparticle-embedded dielectric nanowires,” Nat. Mater. 5(2), 102–106 (2006). [CrossRef] [PubMed]
  9. R. del Coso, J. Requejo-Isidro, J. Solis, J. Gonzalo, and C. N. Afonso, “Third order nonlinear optical susceptibility of Cu:Al2O3 nanocomposites: From spherical nanoparticles to the percolation threshold,” J. Appl. Phys. 95(5), 2755–2762 (2004). [CrossRef]
  10. M. A. Mangold, C. Weiss, M. Calame, and A. W. Holleitner, “Surface plasmon enhanced photoconductance of gold nanoparticle arrays with incorporated alkane linkers,” Appl. Phys. Lett. 94(16), 161104 (2009). [CrossRef]
  11. S. Y. Xu, J. Xu, and M. L. Tian, “A low cost platform for linking transport properties to the structure of nanomaterials,” Nanotechnology 17(5), 1470–1475 (2006). [CrossRef]
  12. E.-K. Jeon, H. Seo, C. W. Ahn, H. Seong, H. J. Choi, J.-J. Kim, K.-J. Kong, G. Buh, H. Chang, and J.-O. Lee, “Resolving microscopic interfaces in Si(1-x)Ge(x) alloy nanowire devices,” Nanotechnology 20(11), 115708 (2009). [CrossRef] [PubMed]
  13. S. Kirkpatrick, “Percolation and Conduction,” Rev. Mod. Phys. 45(4), 574–588 (1973). [CrossRef]
  14. C. Pennetta, L. Reggiani, and G. Trefan, “Scaling and universality in electrical failure of thin films,” Phys. Rev. Lett. 84(21), 5006–5009 (2000). [CrossRef] [PubMed]
  15. C. Pennetta, G. Trefan, and L. Reggiani, “Scaling law of resistance fluctuations in stationary random resistor networks,” Phys. Rev. Lett. 85(24), 5238–5241 (2000). [CrossRef] [PubMed]
  16. D.-K. Kim, K. Kerman, M. Saito, R. R. Sathuluri, T. Endo, S. Yamamura, Y.-S. Kwon, and E. Tamiya, “Label-free DNA biosensor based on localized surface plasmon resonance coupled with interferometry,” Anal. Chem. 79(5), 1855–1864 (2007). [CrossRef] [PubMed]
  17. B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys. 96(12), 7519–7526 (2004). [CrossRef]
  18. K. Y. Yang, K. C. Choi, and C. W. Ahn, “Surface plasmon-enhanced spontaneous emission rate in an organic light-emitting device structure: Cathode structure for plasmonic application,” Appl. Phys. Lett. 94(17), 173301 (2009). [CrossRef]
  19. K. Y. Yang, K. C. Choi, and C. W. Ahn, “Surface plasmon-enhanced energy transfer in an organic light-emitting device structure,” Opt. Express 17(14), 11495–11504 (2009). [CrossRef] [PubMed]
  20. A. Kiesow, J. E. Morris, C. Radehaus, and A. Heilmann, “Switching behavior of plasma polymer films containing silver nanoparticles,” J. Appl. Phys. 94(10), 6988–6990 (2003). [CrossRef]
  21. V. K. S. Shante and S. Kirkpatrick, “An introduction to percolation theory,” Adv. Phys. 20(85), 325–357 (1971). [CrossRef]
  22. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, Berlin, 1995).
  23. S. A. Maier, Plasmonics: Fundamentals and applications (Springer, New York, 2007).
  24. R. D. Fedorovich, A. G. Naumovets, and P. M. Tomchuk, “Electron and light emission from island metal films and generation of hot electrons in nanoparticles,” Phys. Rep. 328(2-3), 73–179 (2000). [CrossRef]
  25. C. A. Neugebauer and M. B. Webb, “Electrical Conduction Mechanism in Ultrathin, Evaporated Metal Films,” J. Appl. Phys. 33(1), 74–82 (1962). [CrossRef]
  26. P. Banerjee, D. Conklin, S. Nanayakkara, T.-H. Park, M. J. Therien, and D. A. Bonnell, “Plasmon-induced electrical conduction in molecular devices,” ACS Nano 4(2), 1019–1025 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited