OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 16 — Aug. 2, 2010
  • pp: 16387–16405

Diffractive phase-shift lithography photomask operating in proximity printing mode

Giuseppe A. Cirino, Ronaldo D. Mansano, Patrick Verdonck, Lucila Cescato, and Luiz G. Neto  »View Author Affiliations


Optics Express, Vol. 18, Issue 16, pp. 16387-16405 (2010)
http://dx.doi.org/10.1364/OE.18.016387


View Full Text Article

Enhanced HTML    Acrobat PDF (1891 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A phase shift proximity printing lithographic mask is designed, manufactured and tested. Its design is based on a Fresnel computer-generated hologram, employing the scalar diffraction theory. The obtained amplitude and phase distributions were mapped into discrete levels. In addition, a coding scheme using sub-cells structure was employed in order to increase the number of discrete levels, thus increasing the degree of freedom in the resulting mask. The mask is fabricated on a fused silica substrate and an amorphous hydrogenated carbon (a:C-H) thin film which act as amplitude modulation agent. The lithographic image is projected onto a resist coated silicon wafer, placed at a distance of 50 μm behind the mask. The results show a improvement of the achieved resolution – linewidth as good as 1.5 μm - what is impossible to obtain with traditional binary masks in proximity printing mode. Such achieved dimensions can be used in the fabrication of MEMS and MOEMS devices. These results are obtained with a UV laser but also with a small arc lamp light source exploring the partial coherence of this source.

© 2010 OSA

OCIS Codes
(110.5220) Imaging systems : Photolithography
(220.4000) Optical design and fabrication : Microstructure fabrication
(150.1135) Machine vision : Algorithms
(310.6845) Thin films : Thin film devices and applications
(070.7345) Fourier optics and signal processing : Wave propagation

ToC Category:
Imaging Systems

History
Original Manuscript: June 17, 2010
Revised Manuscript: July 6, 2010
Manuscript Accepted: July 7, 2010
Published: July 20, 2010

Citation
Giuseppe A. Cirino, Ronaldo D. Mansano, Patrick Verdonck, Lucila Cescato, and Luiz G. Neto, "Diffractive phase-shift lithography photomask operating in proximity printing mode," Opt. Express 18, 16387-16405 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-16-16387


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. D. Levenson, N. S. Viswanathan, and R. A. Simpson, “Improving resolution in photolithography with a phase-shifting mask,” IEEE Trans. Electron. Dev. 29(12), 1828–1836 (1982). [CrossRef]
  2. M. D. Levenson, “Using destructive optical interference in semiconductor lithography,” Opt. Photon. News, 30-35 Apr. (2006).
  3. M. D. Levenson, “Wavefront engineering for photolithography,” Phys. Today 28–36, (1993). [CrossRef]
  4. M. D. Levenson, “Extending the lifetime of optical lithography technologies with wavefront engineering,” Jpn. J. Appl. Phys. 33(Part 1, No. 12B), 6765–6773 (1994). [CrossRef]
  5. M. Shibuya, “Projection master for transmitted illumination,” Japanese Patent Gazette # Showa 62–50811, October 27, (1987).
  6. G. Talor, “Transparent phase shift mask for fabrication of small feature sizes,” US Patent 6 933 085 B1, August 23, (2005).
  7. K. Kukuchi, “Phase shift mask, method of exposure, and method of producing semiconductor devices”, US Patent Application US 2002/0177051 A1, August 03, (2002).
  8. J. Turunen and F. Wyrowski, in Diffractive Optics for Industrial and Commercial Applications, 1st.ed, (Berlin: Akademi. Verlag, 1997), Chap. 1.
  9. D. C. O’Shea, T. J. Suleski, A. D. Kathman, and D. W. Prather, Diffractive Optics: Design, Fabrication and Test, (SPIE Press: Washington, 2004), pp. 115–121.
  10. T. J. Suleski, W. F. Delaney, and M. R. Feldman, “Fabricating optical elements using a photoresist formed from proximity printing of a gray level mask”, US Patent 6 638 667, October 28, 2003.
  11. P. Dentinger, K. Krafcik, K. Simison, R. Janek, and J. Hachman, “High aspect ratio patterning with a proximity ultraviolet source,” Microelectron. Eng. 61–62, 1001–1007 (2002). [CrossRef]
  12. P. Canestrari, G. A. Degiorgis, P. de Natale, L. Gazzaruso, and G. Rivera, “Optimization of partial coherence for half-micron i–line lithography” Proc. SPIE 1463, 446–455 (1991). [CrossRef]
  13. D. Meyerhofer and J. Mitchell, “Proximity printing of chrome masks,” Polym. Eng. Sci. 23(18), 990–992 (1983). [CrossRef]
  14. T. Lin, H. Yang and C. Chao, “Concave microlens array mold fabrication in photoresist using UV proximity printing”, Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS (DTIP’07), 11–15, (2007).
  15. L. Ping, Y. Hsihamg, and C. Chao, “A new microlens array fabrication method using UV proximity printing,” J. Micromechan. Eng. 13(5), 748–757 (2003). [CrossRef]
  16. H. Yang, C. K. Chao, T. H. Lin, and C. P. Lin, “Fabrication of microlens array with graduated sags using UV proximity printing method,” Microsyst. Technol. 12(2), 82–90 (2005). [CrossRef]
  17. T. Lin, H. Yang, R. F. Shyu, and C.-K. Chao, “New horizontal frustum optical waveguide fabrication using UV proximity printing,” Microsyst. Technol. 14(7), 1035–1040 (2008). [CrossRef]
  18. W. Henke, M. Weiss, R. Schwalm, and J. Pelka, “Simulation of proximity printing,” Microelectron. Eng. 10(2), 127–152 (1990). [CrossRef]
  19. B. Meliorisz and A. Erdmann, “Simulation of mask proximity printing,” J. Micro/Nanolithography, MEMS MOEMS 6(2), 729–736 (2007).
  20. B. Meliorisz, P. Evanschitzky, and A. Erdmann, “Simulation of proximity and contact lithography,” Microelectron. Eng. 84(5), 733–736 (2007). [CrossRef]
  21. M. Teschke and S. Sinzinger, “Novel approaches to the design of halftone masks for analog lithography,” Appl. Opt. 47(26), 4767–4776 (2008). [CrossRef] [PubMed]
  22. S. A. Campbell, The Science and Engineering of Microeledtronic Fabrication, (Oxford University Press, 1996), Chap. 7.
  23. H. Kirchauer, “Photolithography Simulation“, PhD. Dissertation, Fakultät für Elektrotechnik, Technischen, Universität Wien . (1998). http://www.iue.tuwien.ac.at/phd/kirchauer/
  24. F. Wyrowski, E. Kley, T. J. Nellissen, L. Wang, and S. Bühling, “Proximity printing by wave-optically designed masks,” Proc SPIE 4436, (2001).
  25. S. Buhling, et al., “High resolution proximity printing by wave-optically designed complex transmission masks,” Proc SPIE 4404, (2001).
  26. L. G. Neto, R. D. Mansano, G. A. Cirino, L. S. Zambom, and P. Verdonck, “Amorphous hidrogenated carbon film,” US Patent 7,381,452, June (2008).
  27. L. G. Neto, G. A. Cirino, R. D. Mansano, P. S. P. Cardona, and P. Verdonck, “Hybrid phase and amplitude modulation proximity printing mask fabricated on DLC and SiO2 substrates,” Proc SPIE 4984, 18-28 (2003).
  28. L. G. Neto, P. S. P. Cardona, G. A. Cirino, R. D. Mansano, and P. Verdonck, “Design, fabrication, and characterization of a full complex-amplitude modulation diffractive optical element,” J. Microlithography, Microfabrication and Microsystems 2(2), 96–104 (2003). [CrossRef]
  29. L. G. Neto, P. S. P. Cardona, G. A. Cirino, R. D. Mansano, and P. Verdonck, “Implementation of Fresnel full complex-amplitude digital holograms,” Opt. Eng. 43(11), 2640 (2004). [CrossRef]
  30. G. A. Cirino, P. Verdonck, R. D. Mansano, and L. G. Neto, “Optical characterization of an amorphous-hidrogenated carbon film and its application in phase modulated diffractive optical elements” in Proc. XVI International Conference on Microelectronics and Packaging, Brazil, 140–145, (2001).
  31. L. G. Neto, G. A. Cirino, R. D. Mansano, P. S. P. Cardona, and P. Verdonck, “Hybrid phase and amplitude modulation proximity printing mask fabricated on DLC and SiO2 substrates”, Proc SPIE 4984, 18-28 (2003).
  32. J. W. Goodman, Introduction to Fourier Optics, 2nd ed., (McGraw-Hill, 1996), Chap. 3.
  33. G. A. Cirino, R. D. Mansano, P. Verdonck, R. G. Jasinevicius, and L. G. Neto, “Diffraction gratings fabricated on DLC thin films,” Surf. Coat. Tech. 204(18-19), 2966–2970 (2010). [CrossRef]
  34. C. R. A. Lima, L. L. Soares, L. Cescato, M. A. Alves, and E. S. Braga, “Diffractive structures holographically recorded in amorphous hydrogenated carbon (a-C:H) films,” Opt. Lett. 22(23), 1805–1807 (1997). [CrossRef]
  35. L. L. Soares and ., “Recording of relief structures in amorphous hydrogenated carbon (a-C:H) films for infrared diffractive optics,” J. Mod. Opt. 45(7), 1479–1486 (1998). [CrossRef]
  36. L. G. Neto, L. B. Roberto, R. D. Mansano, P. Verdonck, G. A. Cirino, and M. A. Steffani, “Multiple Line Generation Over High Angle Using Hybrid Parabolic Profile and Binary Surface-Relief Phase Element,” Appl. Opt. 40(2), 211–218 (2001). [CrossRef]
  37. R. D. Mansano, P. Verdonck, and H. S. Maciel, “Anisotropic reactive ion etching in silicon, using a graphite electrode,” Sens. Actuators A Phys. 65(2-3), 180–186 (1998). [CrossRef]
  38. P. W. Leech, “Reactive ion etching of quartz and silica-based glasses in CF4/CHF3 plasmas,” Vacuum 55(3-4), 191–196 (1999). [CrossRef]
  39. R. D. Mansano, “Effects of the methane content on the characteristics of diamond-like carbon films produced by sputtering,” Thin Solid Films 373(1-2), 243–246 (2000). [CrossRef]
  40. S. A. Campbell, The Science and Engineering of Microeledtronic Fabrication, (Oxford University Press, 1996), Chap. 7.
  41. P. Concidine, “Effects of coherence on imaging systems,” J. Opt. Soc. Am. 56(8), 1001–1008 (1966). [CrossRef]
  42. M. Born, and E. Wolf, Principles of optics: Electromagnetic theory of propagation, interference and diffraction of light, 6th ed., (Pergamon, 1980), Chap. 10.
  43. P. H. van Cittert, “Die wahrscheinliche Schwingungsverteilung in einer von einer Lichtquelle direct oder mittels einer Linse beleuchteten Ebene,” Physica 1(1-6), 201–210 (1934). [CrossRef]
  44. F. Zernike, “The Concept of Degree of Coherence and Its Application to Optical Problems,” Physics 5, 785–795 (1938).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited