OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 16 — Aug. 2, 2010
  • pp: 16418–16429

Numerical implementation of a VCSEL-based stochastic logic gate via polarization bistability

J. Zamora-Munt and C. Masoller  »View Author Affiliations

Optics Express, Vol. 18, Issue 16, pp. 16418-16429 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1781 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We study the interplay of polarization bistability, spontaneous emission noise and aperiodic current modulation in vertical cavity surface emitting lasers (VCSELs). We demonstrate the phenomenon of logic stochastic resonance (LSR), by which the laser gives robust and reliable logic response to two logic inputs encoded in an aperiodic signal directly modulating the laser bias current. The probability of a correct response is controlled by the noise strength, and is equal to 1 in a wide region of noise strengths. LSR is associated with optimal noise-activated polarization switchings (the so-called “inter-well” dynamics if one considers the VCSEL as a bistable system described by a double-well potential) and optimal sensitivity to spontaneous emission in each polarization (the “intra-well” dynamics in the double-well potential picture). The robust nature of LSR in VCSELs offers interesting perspectives for novel applications and provides yet another example of a driven nonlinear optical system where noise can be employed constructively.

© 2010 Optical Society of America

OCIS Codes
(140.3430) Lasers and laser optics : Laser theory
(250.7260) Optoelectronics : Vertical cavity surface emitting lasers

ToC Category:

Original Manuscript: April 5, 2010
Revised Manuscript: June 8, 2010
Manuscript Accepted: June 24, 2010
Published: July 21, 2010

J. Zamora-Munt and C. Masoller, "Numerical implementation of a VCSEL-based stochastic logic gate via polarization bistability," Opt. Express 18, 16418-16429 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. Koyama, “Recent advances of VCSEL photonics,” J. Lightwave Technol. 24, 4502–4513 (2006). [CrossRef]
  2. G. Giacomelli, F. Marin, M. Gabrysch, K. H. Gulden, and M. Moser, “Polarization competition and noise properties of VCSELs,” Opt. Commun. 146, 136–140 (1998). [CrossRef]
  3. H. Li, A. Hohl, A. Gavrielides, H. Hou, and K. D. Choquette, “Stable polarization self-modulation in vertical cavity surface-emitting lasers,” Appl. Phys. Lett. 72, 2355–2357 (1998). [CrossRef]
  4. T. Ackemann, and M. Sondermann, “Characteristics of polarization switching from the low to the high frequency mode in vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 78, 3574–3576 (2001). [CrossRef]
  5. S. Bandyopadhyay, Y. Hong, P. S. Spencer, and K. A. Shore, “Experimental observation of anti-phase polarisation dynamics in VCSELS,” Opt. Commun. 202, 145–154 (2002). [CrossRef]
  6. J. Danckaert, M. Peeters, C. Mirasso, M. San Miguel, G. Verschaffelt, J. Albert, B. Nagler, H. Unold, R. Michalzik, G. Giacomelli, and F. Marin, “Stochastic polarization switching dynamics in vertical-cavity surface emitting lasers: theory and experiment,” IEEE J. Sel. Top. Quantum Electron. 10, 911–917 (2004). [CrossRef]
  7. M. Sciamanna, and K. Panajotov, “Route to polarization switching induced by optical injection in vertical-cavity surface-emitting lasers,” Phys. Rev. A 73, 023811 (2006). [CrossRef]
  8. P. A. Porta, D. P. Curtin, and J. G. McInerney, “Laser Doppler velocimetry by optical self-mixing, in vertical cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 14, 1719–1721 (2002). [CrossRef]
  9. J. Albert, M. C. Soriano, I. Veretennicoff, K. Panajotov, J. Danckaert, P. A. Porta, D. P. Curtin, and J. G. McInerney, “Laser Doppler velocimetry with polarization-bistable VCSELs,” IEEE J. Sel. Top. Quantum Electron. 10, 1006–1012 (2004). [CrossRef]
  10. T. Katayama, T. Ooi, and H. Kawaguchi, “Experimental demonstration of multi-bit optical buffer memory using 1.55-mu m polarization bistable vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 45, 1495–1504 (2009). [CrossRef]
  11. H. Kawaguchi, “Polarization-bistable vertical-cavity surface-emitting lasers: application for optical bit memory,” Opto-Electron. Rev. 17, 265–274 (2009). [CrossRef]
  12. T. Mori, Y. Sato, and H. Kawaguchi, “10-Gb/s optical buffer memory using a polarization bistable VCSEL,” IEICE Trans. Electron E 92C, 957–963 (2009). [CrossRef]
  13. K. Murali, S. Shina, W. L. Ditto, and A. R. Bulsara, “Reliable logic circuit elements that exploit nonlinearity in the presence of a noise floor,” Phys. Rev. Lett. 102, 104101 (2009). [CrossRef] [PubMed]
  14. K. Murali, I. Rajamohamed, S. Shina, W. L. Ditto, and A. R. Bulsara, “Realization of reliable and flexible logic gates using noisy nonlinear circuits,” Appl. Phys. Lett. 95, 194102 (2009). [CrossRef]
  15. L. Worschech, F. Hartmann, T. Y. Kim, S. Hofling, M. Kamp, A. Forchel, J. Ahopelto, I. Neri, A. Dari, and L. Gammaitoni, “Universal and reconfigurable logic gates in a compact three-terminal resonant tunneling diode,” Appl. Phys. Lett. 96, 042112 (2010). [CrossRef]
  16. J. Martin-Regalado, F. Prati, M. San Miguel, and N. B. Abraham, “Polarization properties of vertical-cavity surface- emitting lasers,” IEEE J. Quantum Electron. 33, 765–783 (1997). [CrossRef]
  17. M. B. Willemsen, M. U. F. Khalid, M. P. van Exter, and J. P. Woerdman, “Polarization switching of a vertical cavity semiconductor laser as a Kramers hopping problem,” Phys. Rev. Lett. 82, 4815–4818 (1999). [CrossRef]
  18. P. Mandel, Theoretical Problems in Cavity Nonlinear Optics, (Cambridge University Press, Cambridge, England, 1997). [CrossRef]
  19. C. Masoller, M. S. Torre, and P. Mandel, “Influence of the injection current sweep rate on the polarization switching of vertical-cavity surface-emitting lasers,” J. Appl. Phys. 99, 026106 (2006). [CrossRef]
  20. J. Paul, C. Masoller, Y. Hong, P. S. Spencer, and K. A. Shore, “Experimental study of polarization switching of vertical-cavity surface-emitting lasers as a dynamical bifurcation,” Opt. Lett. 31, 748–750 (2006). [CrossRef] [PubMed]
  21. L. Gammaitoni, P. Hänggi, P. Jung, and F. Marchesoni, “Stochastic resonance,” Rev. Mod. Phys. 70, 223–287 (1998). [CrossRef]
  22. C. Masoller, and N. B. Abraham, “Low-frequency uctuations in vertical-cavity surface-emitting semiconductor lasers with optical feedback,” Phys. Rev. A 59, 3021–3031 (1999). [CrossRef]
  23. S. Balle, E. Tolkachova, M. San Miguel, J. R. Tredicce, J. Martin-Regalado, and A. Gahl, “Mechanisms of polarization switching in single-transverse-mode vertical-cavity surface-emitting lasers: thermal shift and nonlinear semiconductor dynamics,” Opt. Lett. 24, 1121–1123 (1999). [CrossRef]
  24. G. Verschaffelt, J. Albert, I. Veretennicoff, J. Danckaert, S. Barbay, G. Giacomelli, and F. Marin, “Frequency response of current-driven polarization modulation in vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 80, 2248–2250 (2002). [CrossRef]
  25. C. Masoller, and M. S. Torre, “Modeling thermal effects and polarization competition in vertical-cavity surface emitting lasers,” Opt. Express 16, 21282–21296 (2008). [CrossRef] [PubMed]
  26. M. Borromeo, and F. Marchesoni, “Asymmetric probability densities in symmetrically modulated bistable devices,” Phys. Rev. E 71, 031105 (2005). [CrossRef]
  27. S. Barbay, G. Giacomelli, and F. Marin, “Noise-assisted binary information transmission in vertical cavity surface emitting lasers,” Opt. Lett. 25, 1095–1097 (2000). [CrossRef]
  28. S. Barbay, G. Giacomelli, and F. Marin, “Noise-assisted transmission of binary information: theory and experiment,” Phys. Rev. E 63, 051110 (2001). [CrossRef]
  29. D. V. Dylov, and J. W. Fleischer, “Nonlinear self-filtering of noisy images via dynamical stochastic resonance,” Nat. Photonics 4, 323–328 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited