OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 16 — Aug. 2, 2010
  • pp: 16430–16436

Frequency-agile THz-wave generation and detection system using nonlinear frequency conversion at room temperature

Ruixiang Guo, Tomofumi Ikari, Jun Zhang, Hiroaki Minamide, and Hiromasa Ito  »View Author Affiliations


Optics Express, Vol. 18, Issue 16, pp. 16430-16436 (2010)
http://dx.doi.org/10.1364/OE.18.016430


View Full Text Article

Enhanced HTML    Acrobat PDF (810 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A surface-emitting THz parametric oscillator is set up to generate a narrow-linewidth, nanosecond pulsed THz-wave radiation. The THz-wave radiation is coherently detected using the frequency up-conversion in MgO: LiNbO3 crystal. Fast frequency tuning and automatic achromatic THz-wave detection are achieved through a special optical design, including a variable-angle mirror and 1:1 telescope devices in the pump and THz-wave beams. We demonstrate a frequency-agile THz-wave parametric generation and THz-wave coherent detection system. This system can be used as a frequency-domain THz-wave spectrometer operated at room-temperature, and there are a high possible to develop into a real-time two-dimensional THz spectral imaging system.

© 2010 Optical Society of America

OCIS Codes
(190.4360) Nonlinear optics : Nonlinear optics, devices
(190.7220) Nonlinear optics : Upconversion
(040.2235) Detectors : Far infrared or terahertz
(190.4975) Nonlinear optics : Parametric processes

ToC Category:
Nonlinear Optics

History
Original Manuscript: April 15, 2010
Revised Manuscript: June 28, 2010
Manuscript Accepted: June 29, 2010
Published: July 21, 2010

Citation
Ruixiang Guo, Tomofumi Ikari, Jun Zhang, Hiroaki Minamide, and Hiromasa Ito, "Frequency-agile THz-wave generation and detection system using nonlinear frequency conversion at room temperature," Opt. Express 18, 16430-16436 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-16-16430


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. Kawase, M. Sato, T. Taniuchi, H. Ito, “Coherent tunable THz-wave generation from LiNbO3 with monolithic grating coupler,” Appl. Phys. Lett. 68(18), 2483–2485 (1996). [CrossRef]
  2. T. Ikari, X. B. Zhang, H. Minamide, H. Ito, “THz-wave parametric oscillator with a surface-emitted configuration,” Opt. Express 14(4), 1604–1610 (2006). [CrossRef] [PubMed]
  3. R. Guo, K. Akiyama, H. Minamide, T. Ikari, H. Ito, “Continuously tunable and coherent terahertz radiation by means of phase-matched difference-frequency generation in zinc germanium phosphide,” Appl. Phys. Lett. 88, 091120 (2006). [CrossRef]
  4. D. Molter, M. Theuer, R. Beigang, “Nanosecond terahertz optical parametric oscillator with a novel quasi phase matching scheme in lithium niobate,” Opt. Express 17(8), 6623–6628 (2009). [CrossRef] [PubMed]
  5. A. Nahata, A. S. Weling, T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69(16), 2321–2323 (1996). [CrossRef]
  6. K. Kawase, M. Mizuno, S. Sohma, H. Takahashi, T. Taniuchi, Y. Urata, S. Wada, H. Tashiro, H. Ito, “Difference-frequency terahertz-wave generation from 4-dimethylamino-N-methyl-4-stilbazolium-tosylate by use of an electronically tuned Ti:sapphire laser,” Opt. Lett. 24(15), 1065–1067 (1999). [CrossRef]
  7. W. Shi, Y. J. Ding, “Continuously tunable and coherent terahertz radiation by means of phase-matched difference-frequency generation in zinc germanium phosphide,” Appl. Phys. Lett. 83(5), 848–850 (2003). [CrossRef]
  8. Y. Sasaki, Y. Avetisyan, H. Yokoyama, H. Ito, “Surface-emitted terahertz-wave difference-frequency generation in two-dimensional periodically poled lithium niobate,” Opt. Lett. 30(21), 2927–2929 (2005). [CrossRef] [PubMed]
  9. H. Ito, K. Suizu, T. Yamashita, A. Nawahara, T. Sato, “Random frequency accessible broad tunable terahertz-wave source using phase-matched 4-dimethylamino-N-methyl-4-stilbazolium tosylate crystal,” Jpn. J. Appl. Phys. 46(11), 7321–7324 (2007). [CrossRef]
  10. K. Miyamoto, H. Minamide, M. Fujiwara, H. Hashimoto, H. Ito, “Widely tunable terahertz-wave generation using an N-benzyl-2-methyl-4-nitroaniline crystal,” Opt. Lett. 33(3), 252–254 (2008). [CrossRef] [PubMed]
  11. W. Shi, Y. J. Ding, N. Fernelius, F. K. Hopkins, “Observation of difference-frequency generation by mixing of terahertz and near-infrared laser beams in a GaSe crystal,” Appl. Phys. Lett. 88(10), 101101 (2006). [CrossRef]
  12. M. J. Khan, J. C. Chen, S. Kaushik, “Optical detection of terahertz radiation by using nonlinear parametric upconversion,” Opt. Lett. 32(22), 3248–3250 (2007). [CrossRef] [PubMed]
  13. R. Guo, S. Ohno, H. Minamide, T. Ikari, H. Ito, “Highly sensitive coherent detection of terahertz waves at room temperature using a parametric process,” Appl. Phys. Lett. 93(2), 021106 (2008). [CrossRef]
  14. H. Minamide, J. Zhang, R. Guo, and H. Ito, “Tunable Terahertz-wave detection using a DAST optical up-conversion,” M5E04, IRMMW-THz 2009, Busan.
  15. J. E. Midwinter, J. Warner, “Up-Conversion of near infrared to visible radiation in Lithium-meta-Niobate,” J. Appl. Phys. 38(2), 519–523 (1967). [CrossRef]
  16. G. D. Boyd, T. J. Bridges, E. Burkhardt, “Up-conversion of 10.6 μ radiation to the visible and second harmonic generation in HgS,” IEEE J. Quantum Electron. 4(9), 515–519 (1968). [CrossRef]
  17. A. A. Babin, V. N. Petryakov, G. I. Freidman, “Use of stimulated scattering by polaritons in detection of submillimeter radiation,” Sov. J. Quantum Electron. 13(7), 958–960 (1983). [CrossRef]
  18. M. A. Piestrup, R. N. Fleming, R. H. Pantell, “Continuously tunable submillimeter wave source,” Appl. Phys. Lett. 26(8), 418–420 (1975). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited