OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 16 — Aug. 2, 2010
  • pp: 16443–16451

Enhancing and redirecting carbon nanotube photoluminescence by an optical antenna

Miriam Böhmler, Nicolai Hartmann, Carsten Georgi, Frank Hennrich, Alexander A. Green, Mark C. Hersam, and Achim Hartschuh  »View Author Affiliations


Optics Express, Vol. 18, Issue 16, pp. 16443-16451 (2010)
http://dx.doi.org/10.1364/OE.18.016443


View Full Text Article

Enhanced HTML    Acrobat PDF (1759 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We observe the angular radiation pattern of single carbon nanotubes' photoluminescence in the back focal plane of a microscope objective and show that the emitting nanotube can be described by a single in-plane point dipole. The near-field interaction between a nanotube and an optical antenna modifies the radiation pattern that is now dominated by the antenna characteristics. We quantify the antenna induced excitation and radiation enhancement and show that the radiative rate enhancement is connected to a directional redistribution of the emission.

© 2010 OSA

OCIS Codes
(160.6000) Materials : Semiconductor materials
(260.3800) Physical optics : Luminescence
(260.3910) Physical optics : Metal optics
(180.4243) Microscopy : Near-field microscopy

ToC Category:
Microscopy

History
Original Manuscript: May 5, 2010
Revised Manuscript: June 24, 2010
Manuscript Accepted: July 6, 2010
Published: July 21, 2010

Citation
Miriam Böhmler, Nicolai Hartmann, Carsten Georgi, Frank Hennrich, Alexander A. Green, Mark C. Hersam, and Achim Hartschuh, "Enhancing and redirecting carbon nanotube photoluminescence by an optical antenna," Opt. Express 18, 16443-16451 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-16-16443


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Jorio, M. S. Dresselhaus, and G. Dresselhaus, eds., Carbon Nanotubes, vol. 111 of Topics in Applied Physics (Springer, Berlin / Heidelberg, 2008).
  2. J. Lefebvre, S. Maruyama, and P. Finnie, “Photoluminescence: Science and Applications“ in Carbon Nanotubes, vol. 111 of Topics in Applied Physics, A. Jorio, M. S. Dresselhaus, and G. Dresselhaus, eds. (Springer, Berlin / Heidelberg, 2008). [PubMed]
  3. P. Avouris, M. Freitag, and V. Perebeinos, “Carbon-nanotube photonics and optoelectronics,” Nat. Photonics 2(6), 341–350 (2008). [CrossRef]
  4. F. Xia, M. Steiner, Y. M. Lin, and P. Avouris, “A microcavity-controlled, current-driven, on-chip nanotube emitter at infrared wavelengths,” Nat. Nanotechnol. 3(10), 609–613 (2008). [CrossRef] [PubMed]
  5. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010). [CrossRef] [PubMed]
  6. P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical Antennas,” Adv. Opt. Photon. 1(3), 438–483 (2009). [CrossRef]
  7. J. N. Farahani, D. W. Pohl, H.-J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna: a tunable superemitter,” Phys. Rev. Lett. 95(1), 017402 (2005). [CrossRef] [PubMed]
  8. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008). [CrossRef] [PubMed]
  9. E. Fort and S. Grésillon, “Surface enhanced fluorescence,” J. Phys. D 41(1), 013001 (2008). [CrossRef]
  10. A. Hartschuh, “Tip-enhanced near-field optical microscopy,” Angew. Chem. Int. Ed. Engl. 47(43), 8178–8191 (2008). [CrossRef] [PubMed]
  11. V. Deckert, “Tip-Enhanced Raman Spectroscopy,” J. Raman Spectrosc. 40(10), 1336–1337 (2009). [CrossRef]
  12. P. Bharadwaj and L. Novotny, “Spectral dependence of single molecule fluorescence enhancement,” Opt. Express 15(21), 14266–14274 (2007). [CrossRef] [PubMed]
  13. L. G. Cançado, A. Hartschuh, and L. Novotny, “Tip-enhanced Raman spectroscopy of carbon nanotubes,” J. Raman Spectrosc. 40(10), 1420–1426 (2009). [CrossRef]
  14. R. Ruppin, “Decay of an excited molecule near a small metal sphere,” J. Chem. Phys. 76(4), 1681–1684 (1982). [CrossRef]
  15. H. Gersen, M. F. García-Parajó, L. Novotny, J. A. Veerman, L. Kuipers, and N. F. van Hulst, “Influencing the angular emission of a single molecule,” Phys. Rev. Lett. 85(25), 5312–5315 (2000). [CrossRef]
  16. S. Kühn, G. Mori, M. Agio, and V. Sandoghdar, “Modification of single molecule fluorescence close to a nanostructure: radiation pattern, spontaneous emission and quenching,” Mol. Phys. 106(7), 893–908 (2008). [CrossRef]
  17. T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Single emitters coupled to plasmonic nano-antennas: angular emission and collection efficiency,” N. J. Phys. 10(10), 105005 (2008). [CrossRef]
  18. T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. van Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics 2(4), 234–237 (2008). [CrossRef]
  19. C. Huang, A. Bouhelier, G. Colas des Francs, A. Bruyant, A. Guenot, E. Finot, J.-C. Weeber, and A. Dereux, “Gain, detuning, and radiation patterns of nanoparticle optical antennas,” Phys. Rev. B 78(15), 155407 (2008). [CrossRef]
  20. P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006). [CrossRef] [PubMed]
  21. H. Qian, P. T. Araujo, C. Georgi, T. Gokus, N. Hartmann, A. A. Green, A. Jorio, M. C. Hersam, L. Novotny, and A. Hartschuh, “Visualizing the local optical response of semiconducting carbon nanotubes to DNA-wrapping,” Nano Lett. 8(9), 2706–2711 (2008). [CrossRef] [PubMed]
  22. M. S. Arnold, A. A. Green, J. F. Hulvat, S. I. Stupp, and M. C. Hersam, “Sorting carbon nanotubes by electronic structure using density differentiation,” Nat. Nanotechnol. 1(1), 60–65 (2006). [CrossRef]
  23. N. Stürzl, F. Hennrich, S. Lebedkin, and M. M. Kappes, “Near Monochiral Single-Walled Carbon Nanotube Dispersions in Organic Solvents,” J. Phys. Chem. C 113(33), 14628–14632 (2009). [CrossRef]
  24. M. A. Lieb, J. M. Zavislan, and L. Novotny, “Single-molecule orientations determined by direct emission pattern imaging,” J. Opt. Soc. Am. B 21(6), 1210–1215 (2004). [CrossRef]
  25. C. Georgi, N. Hartmann, T. Gokus, A. A. Green, M. C. Hersam, and A. Hartschuh, “Photoinduced luminescence blinking and bleaching in individual single-walled carbon nanotubes,” ChemPhysChem 9(10), 1460–1464 (2008). [CrossRef] [PubMed]
  26. L. Cognet, D. A. Tsyboulski, J. D. R. Rocha, C. D. Doyle, J. M. Tour, and R. B. Weisman, “Stepwise quenching of exciton fluorescence in carbon nanotubes by single-molecule reactions,” Science 316(5830), 1465–1468 (2007). [CrossRef] [PubMed]
  27. G. Y. Slepyan, M. V. Shuba, S. A. Maksimenko, and A. Lakhtakia, “Theory of optical scattering by achiral carbon nanotubes and their potential as optical nanoantennas,” Phys. Rev. B 73(19), 195416 (2006). [CrossRef]
  28. A. Hagen, M. Steiner, M. B. Raschke, C. Lienau, T. Hertel, H. Qian, A. J. Meixner, and A. Hartschuh, “Exponential decay lifetimes of excitons in individual single-walled carbon nanotubes,” Phys. Rev. Lett. 95(19), 197401 (2005). [CrossRef] [PubMed]
  29. A. J. Siitonen, D. A. Tsyboulski, S. M. Bachilo, and R. B. Weisman, “Surfactant-dependent exciton mobility in single-walled carbon nanotubes studied by single-molecule reactions,” Nano Lett. 10(5), 1595–1599 (2010). [CrossRef] [PubMed]
  30. C. Georgi, M. Böhmler, H. Qian, L. Novotny, and A. Hartschuh, “Probing exciton propagation and quenching in carbon nanotubes with near-field optical microscopy,” Phys. Stat. Solidi B 246(11-12), 2683–2688 (2009). [CrossRef]
  31. A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. P. Wiederrecht, “Surface plasmon characteristics of tunable photoluminescence in single gold nanorods,” Phys. Rev. Lett. 95(26), 267405 (2005). [CrossRef]
  32. L. G. Cançado, A. Jorio, A. Ismach, E. Joselevich, A. Hartschuh, and L. Novotny, “Mechanism of near-field Raman enhancement in one-dimensional systems,” Phys. Rev. Lett. 103(18), 186101 (2009). [CrossRef] [PubMed]
  33. L. Novotny, and B. Hecht, Principles of Nano-Optics (Cambridge, 2006).
  34. L. Novotny, E. J. Sánchez, and X. S. Xie, “Near-field optical imaging using metal tips illuminated by higher-order Hermite–Gaussian beams,” Ultramicroscopy 71(1-4), 21–29 (1998). [CrossRef]
  35. M. R. Beversluis, L. Novotny, and S. J. Stranick, “Programmable vector point-spread function engineering,” Opt. Express 14(7), 2650–2656 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited