OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 16 — Aug. 2, 2010
  • pp: 16452–16459

Giant nonlinear response of terahertz nanoresonators on VO2 thin film

Jisoo Kyoung, Minah Seo, Hyeongryeol Park, Sukmo Koo, Hyun-sun Kim, Youngmi Park, Bong-Jun Kim, Kwangjun Ahn, Namkyoo Park, Hyun-Tak Kim, and Dai-Sik Kim  »View Author Affiliations

Optics Express, Vol. 18, Issue 16, pp. 16452-16459 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1188 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on an order of magnitude enhanced nonlinear response of vanadium dioxide thin film patterned with nanoresonators – nano slot antennas fabricated on the gold film. Transmission of terahertz radiation, little affected by an optical pumping for the case of bulk thin film, can now be completely switched-off: ΔT/T≈-0.9999 by the same optical pumping power. This unprecedentedly large optical pump-terahertz probe nonlinearity originates from the insulator-to-metal phase transition drastically reducing the antenna cross sections of the nanoresonators. Our scheme enables nanoscale-thin film technology to be used for all-optical switching of long wavelength light.

© 2010 OSA

OCIS Codes
(050.1220) Diffraction and gratings : Apertures
(190.0190) Nonlinear optics : Nonlinear optics
(260.5740) Physical optics : Resonance

ToC Category:
Nonlinear Optics

Original Manuscript: May 11, 2010
Revised Manuscript: July 1, 2010
Manuscript Accepted: July 2, 2010
Published: July 21, 2010

Jisoo Kyoung, Minah Seo, Hyeongryeol Park, Sukmo Koo, Hyun-sun Kim, Youngmi Park, Bong-Jun Kim, Kwangjun Ahn, Namkyoo Park, Hyun-Tak Kim, and Dai-Sik Kim, "Giant nonlinear response of terahertz nanoresonators on VO2 thin film," Opt. Express 18, 16452-16459 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Jacobs and A. J. Landahl, “Engineering giant nonlinearities in quantum nanosystems,” Phys. Rev. Lett. 103(6), 067201 (2009). [CrossRef] [PubMed]
  2. X. Hu, P. Jiang, C. Ding, H. Yang, and Q. Gong, “Picosecond and low-power all-optical switching based on an organic photonic-bandgap microcavity,” Nat. Photonics 2(3), 185–189 (2008). [CrossRef]
  3. R. Lopez, R. F. Haglund, L. C. Feldman, L. A. Boatner, and T. E. Haynes, “Optical nonlinearities in VO[sub 2] nanoparticles and thin films,” Appl. Phys. Lett. 85(22), 5191–5193 (2004). [CrossRef]
  4. K. F. MacDonald, V. A. Fedotov, and N. I. Zheludev, “Optical nonlinearity resulting from a light-induced structural transition in gallium nanoparticles,” Appl. Phys. Lett. 82(7), 1087–1089 (2003). [CrossRef]
  5. N. I. Zheludev, “Nonlinear optics on the nanoscale,” Contemp. Phys. 43(5), 365–377 (2002). [CrossRef]
  6. M. Born, and E. Wolf, Principles of Optics (Cambridge University Press, Cambridge UK, 1999).
  7. D. G. Cooke, F. A. Hegmann, E. C. Young, and T. Tiedje, “Electron mobility in dilute GaAs bismide and nitride alloys measured by time-resolved terahertz spectroscopy,” Appl. Phys. Lett. 89(12), 122103 (2006). [CrossRef]
  8. A. Leitenstorfer, S. Hunsche, J. Shah, M. C. Nuss, and W. H. Knox, “Femtosecond Charge Transport in Polar Semiconductors,” Phys. Rev. Lett. 82(25), 5140–5143 (1999). [CrossRef]
  9. S. Lysenko, A. J. Rua, V. Vikhnin, J. Jimenez, F. Fernandez, and H. Liu, “Light-induced ultrafast phase transitions in VO2 thin film,” Appl. Surf. Sci. 252(15), 5512–5515 (2006). [CrossRef]
  10. G. L. Fischer, R. W. Boyd, R. J. Gehr, S. A. Jenekhe, J. A. Osaheni, J. E. Sipe, and L. A. Weller-Brophy, “Enhanced nonlinear optical response of composite materials,” Phys. Rev. Lett. 74(10), 1871–1874 (1995). [CrossRef] [PubMed]
  11. N. N. Lepeshkin, A. Schweinsberg, G. Piredda, R. S. Bennink, and R. W. Boyd, “Enhanced nonlinear optical response of one-dimensional metal-dielectric photonic crystals,” Phys. Rev. Lett. 93(12), 123902 (2004). [CrossRef] [PubMed]
  12. R. L. Nelson and R. W. Boyd, “Enhanced electro-optic response of layered composite materials,” Appl. Phys. Lett. 74(17), 2417–2419 (1999). [CrossRef]
  13. J. H. Kang, J.-H. Choe, D. S. Kim, and Q. H. Park, “Substrate effect on aperture resonances in a thin metal film,” Opt. Express 17(18), 15652–15658 (2009). [CrossRef] [PubMed]
  14. E. Hendry, M. J. Lockyear, J. G. Rivas, L. Kuipers, and M. Bonn, “Ultrafast optical switching of the THz transmission through metallic subwavelength hole arrays,” Phys. Rev. B 75(23), 235305 (2007). [CrossRef]
  15. H.-T. Chen, W. J. Padilla, J. M. O. Zide, S. R. Bank, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Ultrafast optical switching of terahertz metamaterials fabricated on ErAs/GaAs nanoisland superlattices,” Opt. Lett. 32(12), 1620–1622 (2007). [CrossRef] [PubMed]
  16. W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96(10), 107401 (2006). [CrossRef] [PubMed]
  17. W. L. Chan, H.-T. Chen, A. J. Taylor, I. Brener, M. J. Cich, and D. M. Mittleman, “A spatial light modulator for terahertz beams,” Appl. Phys. Lett. 94(21), 213511 (2009). [CrossRef]
  18. I. H. Libon, S. Baumgartner, M. Hempel, N. E. Hecker, J. Feldmann, M. Koch, and P. Dawson, “An optically controllable terahertz filter,” Appl. Phys. Lett. 76(20), 2821–2823 (2000). [CrossRef]
  19. W. L. Chan, M. L. Moravec, R. G. Baraniuk, and D. M. Mittleman, “Terahertz imaging with compressed sensing and phase retrieval,” Opt. Lett. 33(9), 974–976 (2008). [CrossRef] [PubMed]
  20. H. R. Park, Y. M. Park, H. S. Kim, J. S. Kyoung, M. A. Seo, D. J. Park, Y. H. Ahn, K. J. Ahn, and D. S. Kim, “Terahertz nanoresonators: Giant field enhancement and ultrabroadband performance,” Appl. Phys. Lett. 96(12), 121106 (2010). [CrossRef]
  21. F. J. Morin, “Oxides Which Show a Metal-to-Insulator Transition at the Neel Temperature,” Phys. Rev. Lett. 3(1), 34–36 (1959). [CrossRef]
  22. M. Nakajima, N. Takubo, Z. Hiroi, Y. Ueda, and T. Suemoto, “Photoinduced metallic state in VO2 proved by the terahertz pump-probe spectroscopy,” Appl. Phys. Lett. 92(1), 011907 (2008). [CrossRef]
  23. D. J. Hilton, R. P. Prasankumar, S. Fourmaux, A. Cavalleri, D. Brassard, M. A. El Khakani, J. C. Kieffer, A. J. Taylor, and R. D. Averitt, “Enhanced photosusceptibility near Tc for the light-induced insulator-to-metal phase transition in vanadium dioxide,” Phys. Rev. Lett. 99(22), 226401 (2007). [CrossRef]
  24. P. U. Jepsen, B. M. Fischer, A. Thoman, H. Helm, J. Y. Suh, R. Lopez, and R. F. Haglund, “Metal-insulator phase transition in a VO2 thin film observed with terahertz spectroscopy,” Phys. Rev. B 74(20), 205103 (2006). [CrossRef]
  25. A. Cavalleri, T. Dekorsy, H. H. W. Chong, J. C. Kieffer, and R. W. Schoenlein, “Evidence for a structurally-driven insulator-to-metal transition in VO2: A view from the ultrafast timescale,” Phys. Rev. B 70, 161102 (2004). [CrossRef]
  26. A. Cavalleri, C. Tóth, C. W. Siders, J. A. Squier, F. Ráksi, P. Forget, and J. C. Kieffer, “Femtosecond Structural Dynamics in VO2 during an Ultrafast Solid-Solid Phase Transition,” Phys. Rev. Lett. 87(23), 237401 (2001). [CrossRef] [PubMed]
  27. H.-T. Kim, B.-G. Chae, D.-H. Youn, S.-L. Maeng, G. Kim, K.-Y. Kang, and Y.-S. Lim, “Mechanism and observation of Mott transition in VO2-based two- and three-terminal devices,” N. J. Phys. 6, 52 (2004). [CrossRef]
  28. Y. Shin, J. Moon, H. Ju, and C. Park, “Growth and electrical properties of vanadium-dioxide thin films fabricated by magnetron sputtering,” J. Korean Phys. Soc. 52(6), 1828–1831 (2008). [CrossRef]
  29. S. J. Yun, J. W. Lim, B.-G. Chae, B. J. Kim, and H.-T. Kim, “Characteristics of vanadium dioxide films deposited by RF-magnetron sputter deposition technique using V-metal target,” Physica B 403, 1381–1383 (2008).
  30. B. G. Chae, H. T. Kim, and S. J. Yun, “Characteristics of W- and Ti-Doped VO2 Thin Films Prepared by Sol-Gel Method,” Electrochem. Solid State 11(6), D53–D55 (2008). [CrossRef]
  31. P. A. George, J. Strait, J. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, and M. G. Spencer, “Ultrafast optical-pump terahertz-probe spectroscopy of the carrier relaxation and recombination dynamics in epitaxial graphene,” Nano Lett. 8(12), 4248–4251 (2008). [CrossRef]
  32. R. Huber, F. Tauser, A. Brodschelm, M. Bichler, G. Abstreiter, and A. Leitenstorfer, “How many-particle interactions develop after ultrafast excitation of an electron-hole plasma,” Nature 414(6861), 286–289 (2001). [CrossRef] [PubMed]
  33. G. Segschneider, F. Jacob, T. Löffler, H. G. Roskos, S. Tautz, P. Kiesel, and G. Döhler, “Free-carrier dynamics in low-temperature-grown GaAs at high excitation densities investigated by time-domain terahertz spectroscopy,” Phys. Rev. B 65(12), 125205 (2002). [CrossRef]
  34. D. Grischkowsky, S. Keiding, M. Vanexter, and C. Fattinger, “Far-Infrared Time-Domain Spectroscopy with Terahertz Beams of Dielectrics and Semiconductors,” J. Opt. Soc. Am. B 7(10), 2006–2015 (1990). [CrossRef]
  35. Z. Jiang, M. Li, and X. C. Zhang, “Dielectric constant measurement of thin films by differential time-domain spectroscopy,” Appl. Phys. Lett. 76(22), 3221–3223 (2000). [CrossRef]
  36. J. Lee, M. Seo, D. Park, D. Kim, S. Jeoung, Ch. Lienau, Q. H. Park, and P. Planken, “Shape resonance omni-directional terahertz filters with near-unity transmittance,” Opt. Express 14(3), 1253–1259 (2006). [CrossRef] [PubMed]
  37. G. Gallot and D. Grischkowsky, “Electro-optic detection of terahertz radiation,” J. Opt. Soc. Am. B 16(8), 1204–1212 (1999). [CrossRef]
  38. M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics 3(3), 152–156 (2009). [CrossRef]
  39. M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H.-T. Kim, N. Park, Q. H. Park, K. Ahn, and D. S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10(6), 2064–2068 (2010). [CrossRef] [PubMed]
  40. J. W. Lee, M. A. Seo, D. J. Park, S. C. Jeoung, Q. H. Park, Ch. Lienau, and D. S. Kim, “Terahertz transparency at Fabry-Perot resonances of periodic slit arrays in a metal plate: experiment and theory,” Opt. Express 14(26), 12637–12643 (2006). [CrossRef] [PubMed]
  41. J. W. Lee, M. A. Seo, J. Y. Sohn, Y. H. Ahn, D. S. Kim, S. C. Jeoung, Ch. Lienau, and Q. H. Park, “Invisible plasmonic meta-materials through impedance matching to vacuum,” Opt. Express 13(26), 10681–10687 (2005). [CrossRef] [PubMed]
  42. D. J. Park, S. B. Choi, Y. H. Ahn, F. Rotermund, I. B. Sohn, C. Kang, M. S. Jeong, and D. S. Kim, “Terahertz near-field enhancement in narrow rectangular apertures on metal film,” Opt. Express 17(15), 12493–12501 (2009). [CrossRef] [PubMed]
  43. M. A. Seo, A. J. L. Adam, J. H. Kang, J. W. Lee, K. J. Ahn, Q. H. Park, P. C. M. Planken, and D. S. Kim, “Near field imaging of terahertz focusing onto rectangular apertures,” Opt. Express 16(25), 20484–20489 (2008). [CrossRef] [PubMed]
  44. F. J. García-Vidal, E. Moreno, J. A. Porto, and L. Martín-Moreno, “Transmission of light through a single rectangular hole,” Phys. Rev. Lett. 95(10), 103901 (2005). [CrossRef] [PubMed]
  45. J. W. Lee, M. A. Seo, D. H. Kang, K. S. Khim, S. C. Jeoung, and D. S. Kim, “Terahertz electromagnetic wave transmission through random arrays of single rectangular holes and slits in thin metallic sheets,” Phys. Rev. Lett. 99(13), 137401 (2007). [CrossRef] [PubMed]
  46. D. J. Park, S. B. Choi, Y. H. Ahn, Q. H. Park, and D. S. Kim, “Theoretical Study of Terahertz Near-Field Enhancement Assisted by Shape Resonance in Rectangular Hole Arrays in Metal Films,” J. Korean Phys. Soc. 54(1), 64–70 (2009). [CrossRef]
  47. N. Laman and D. Grischkowsky, “Terahertz conductivity of thin metal films,” Appl. Phys. Lett. 93(5), 051105 (2008). [CrossRef]
  48. T. I. Jeon, J. H. Son, K. H. An, Y. H. Lee, and Y. S. Lee, “Terahertz absorption and dispersion of fluorine-doped single-walled carbon nanotube,” J. Appl. Phys. 98(3), 034316 (2005). [CrossRef]
  49. A. Taflove, and S. C. Hagness, Computational Electromagnetics: The Finite-Difference Time-Domain Method (Artech House, Boston, 2000).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited