OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 16 — Aug. 2, 2010
  • pp: 16460–16473

Laser absorption spectroscopy of water vapor confined in nanoporous alumina: wall collision line broadening and gas diffusion dynamics

Tomas Svensson, Märta Lewander, and Sune Svanberg  »View Author Affiliations


Optics Express, Vol. 18, Issue 16, pp. 16460-16473 (2010)
http://dx.doi.org/10.1364/OE.18.016460


View Full Text Article

Enhanced HTML    Acrobat PDF (1277 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate high-resolution tunable diode laser absorption spectroscopy (TDLAS) of water vapor confined in nanoporous alumina. Strong multiple light scattering results in long photon pathlengths (1 m through a 6 mm sample). We report on strong line broadening due to frequent wall collisions (gas-surface interactions). For the water vapor line at 935.685 nm, the HWHM of confined molecules are about 4.3 GHz as compared to 2.9 GHz for free molecules (atmospheric pressure). Gas diffusion is also investigated, and in contrast to molecular oxygen (that moves rapidly in and out of the alumina), the exchange of water vapor is found very slow.

© 2010 Optical Society of America

OCIS Codes
(020.3690) Atomic and molecular physics : Line shapes and shifts
(290.4210) Scattering : Multiple scattering
(290.7050) Scattering : Turbid media
(300.6260) Spectroscopy : Spectroscopy, diode lasers
(300.6320) Spectroscopy : Spectroscopy, high-resolution
(160.4236) Materials : Nanomaterials

ToC Category:
Spectroscopy

History
Original Manuscript: May 18, 2010
Revised Manuscript: July 1, 2010
Manuscript Accepted: July 1, 2010
Published: July 21, 2010

Citation
Tomas Svensson, Märta Lewander, and Sune Svanberg, "Laser absorption spectroscopy of water vapor confined in nanoporous alumina: wall collision line broadening and gas diffusion dynamics," Opt. Express 18, 16460-16473 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-16-16460


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Sjöholm, G. Somesfalean, J. Alnis, S. Andersson-Engels, and S. Svanberg, “Analysis of gas dispersed in scattering media,” Opt. Lett. 26, 16–18 (2001). [CrossRef]
  2. T. Svensson, M. Andersson, L. Rippe, J. Johansson, S. Folestad, and S. Andersson-Engels, “High sensitivity gas spectroscopy of porous, highly scattering solids,” Opt. Lett. 33, 80–82 (2008). [CrossRef]
  3. S. Svanberg, “Optical analysis of trapped gas-Gas in scattering media absorption spectroscopy,” Laser Phys. 20, 68–77 (2010). [CrossRef]
  4. L. Persson, M. Andersson, T. Svensson, M. Cassel-Engquist, K. Svanberg, and S. Svanberg, “Non-intrusive optical study of gas and its exchange in human maxillary sinuses,” Proc. SPIE 6628, 662804 (2007). [CrossRef]
  5. L. Persson, M. Andersson, M. Cassel-Engquist, K. Svanberg, and S. Svanberg, “Gas monitoring in human sinuses using tunable diode laser spectroscopy,” J. Biomed. Opt. 12, 054001 (2007). [CrossRef] [PubMed]
  6. M. Lewander, Z. G. Guan, K. Svanberg, S. Svanberg, and T. Svensson, “Clinical system for non-invasive in situ monitoring of gases in the human paranasal sinuses,” Opt. Express 17, 10849–10863 (2009). [CrossRef] [PubMed]
  7. T. Svensson, L. Persson, M. Andersson, S. Svanberg, S. Andersson-Engels, J. Johansson, and S. Folestad, “Noninvasive characterization of pharmaceutical solids by diode laser oxygen spectroscopy,” Appl. Spectrosc. 61, 784–786 (2007). [CrossRef] [PubMed]
  8. T. Svensson, M. Andersson, L. Rippe, S. Svanberg, S. Andersson-Engels, J. Johansson, and S. Folestad, “VCSEL based oxygen spectroscopy for structural analysis of pharmaceutical solids,” Appl. Phys. B 90, 345–354 (2008). [CrossRef]
  9. T. Svensson, E. Alerstam, J. Johansson, and S. Andersson-Engels, “Optical porosimetry and investigations of the porosity experienced by light interacting with porous media,” Opt. Lett. 35, 1740–1742 (2010). [CrossRef] [PubMed]
  10. M. Andersson, L. Persson, M. Sjöholm, and S. Svanberg, “Spectroscopic studies of wood-drying processes,” Opt. Express 14, 3641–3653 (2006). [CrossRef] [PubMed]
  11. M. Lewander, Z. G. Guan, L. Persson, A. Olsson, and S. Svanberg, “Food monitoring based on diode laser gas spectroscopy,” Appl. Phys. B 93, 619–625 (2008). [CrossRef]
  12. T. Svensson, and Z. Shen, “Laser spectroscopy of gas confined in nanoporous materials,” Appl. Phys. Lett. 96, 021107 (2010). [CrossRef]
  13. Hirschfelder, Curtiss, and Bird, Molecular Theory of Gases and Liquids (Wiley, New York, 1954).
  14. R. H. Johnson, and M. W. P. Strandberg, “Broadening of microwave absorption lines by collisions with the cell walls,” Phys. Rev. 86, 811–812 (1952). [CrossRef]
  15. M. Danos, and S. Geschwind, “Broadening of microwave absorption lines due to wall collisions,” Phys. Rev. 91, 1159–1162 (1953). [CrossRef]
  16. S. C. M. Luijendijk, “Effect of wall collisions on shape of microwave-absorption lines,” J. Phys. B 8, 2995–3000 (1975). [CrossRef]
  17. P. E. Wagner, R. M. Somers, and J. L. Jenkins, “Line broadening and relaxation of 3 microwave transitions in ammonia by wall and intermolecular collisions,” J. Phys. B 14, 4763–4770 (1981). [CrossRef]
  18. S. L. Coy, “Speed dependence of microwave rotational relaxation rates,” J. Chem. Phys. 73, 5531–5555 (1980). [CrossRef]
  19. G. R. Gunthermohr, R. L. White, A. L. Schawlow, W. E. Good, and D. K. Coles, “Hyperfine structure in the spectrum of N14H3. I. Experimental results,” Phys. Rev. 94, 1184–1191 (1954). [CrossRef]
  20. W. Gordy, “Microwave spectroscopy,” Rev. Mod. Phys. 20, 668–717 (1948). [CrossRef]
  21. R. H. Romer, and R. H. Dicke, “New technique for high-resolution microwave spectroscopy,” Phys. Rev. 99, 532–536 (1955). [CrossRef]
  22. G. Dutier, A. Yarovitski, S. Saltiel, A. Papoyan, D. Sarkisyan, D. Bloch, and M. Ducloy, “Collapse and revival of a Dicke-type coherent narrowing in a sub-micron thick vapor cell transmission spectroscopy,” Europhys. Lett. 63, 35–41 (2003). [CrossRef]
  23. S. Ghosh, J. E. Sharping, D. G. Ouzounov, and A. L. Gaeta, “Resonant optical interactions with molecules confined in photonic band-gap fibers,” Phys. Rev. Lett. 94, 093902 (2005). [CrossRef] [PubMed]
  24. J. Hald, J. C. Petersen, and J. Henningsen, “Saturated optical absorption by slow molecules in hollow-core photonic band-gap fibers,” Phys. Rev. Lett. 98, 213902 (2007). [CrossRef] [PubMed]
  25. M. Andersson, L. Persson, T. Svensson, and S. Svanberg, “Flexible lock-in detection system based on synchronized computer plug-in boards applied in sensitive gas spectroscopy,” Rev. Sci. Instrum. 78, 113107 (2007). [CrossRef] [PubMed]
  26. L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. E. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J. P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J. Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simeckova, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110, 533–572 (2009). [CrossRef]
  27. L. R. Brown, R. A. Toth, and M. Dulick, “Empirical line parameters of H16 2 O near 0.94 1m: Positions, intensities and air-broadening coefficients,” J. Mol. Spectrosc. 212, 57–82 (2002). [CrossRef]
  28. J. Olivero, and R. Longbothum, “Empirical fits to Voigt line-width - brief review,” J. Quant. Spectrosc. Radiat. Transf. 17, 233–236 (1977). [CrossRef]
  29. A. Buck, “New equations for computing vapor-pressure and enhancement factor,” J. Appl. Meteorol. 20, 1527–1532 (1981). [CrossRef]
  30. J. Rouquerol, D. Avnir, C. W. Fairbridge, D. H. Everett, J. H. Haynes, N. Pernicone, J. D. F. Ramsay, K. S. W. Sing, and K. K. Unger, “Recommendations for the characterization of porous solids,” Pure Appl. Chem. 66, 1739–1758 (1994). [CrossRef]
  31. E. W. Washburn, “The dynamics of capillary flow,” Phys. Rev. 17, 273–283 (1921). [CrossRef]
  32. T. Svensson, E. Alerstam, D. Khoptyar, J. Johansson, S. Folestad, and S. Andersson-Engels, “Near infrared photon time-of-flight spectroscopy of turbid materials up to 1400 nm,” Rev. Sci. Instrum. 80, 063105 (2009). [CrossRef] [PubMed]
  33. D. Contini, F. Martelli, and G. Zaccanti, “Photon migration through a turbid slab described by a model based on diffusion approximation: I. Theory,” Appl. Opt. 36, 4587–4599 (1997). [CrossRef] [PubMed]
  34. D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, “Localization of light in a disordered medium,” Nature 390, 671–673 (1997). [CrossRef]
  35. M. Störzer, P. Gross, C. M. Aegerter, and G. Maret, “Observation of the critical regime near Anderson localization of light,” Phys. Rev. Lett. 96, 96 (2006).
  36. G. Banerjee, and K. Sengupta, “Pore size optimisation of humidity sensor - a probabilistic approach,” Sens. Actuators B Chem. 86, 34–41 (2002). [CrossRef]
  37. R. Dicke, “The effect of collisions upon the Doppler width of spectral lines,” Phys. Rev. 89, 472–473 (1953). [CrossRef]
  38. R. P. Frueholz, and J. C. Camparo, “Implications of the trapping-desorption and direct inelastic-scattering channels on Dicke-narrowed line-shapes,” Phys. Rev. A 35, 3768–3774 (1987). [CrossRef] [PubMed]
  39. V. Sandoghdar, C. I. Sukenik, E. A. Hinds, and S. Haroche, “Direct measurement of the van der Waals interaction between an atom and its images in a micron-sized cavity,” Phys. Rev. Lett. 68, 3432–3435 (1992). [CrossRef] [PubMed]
  40. M. Fichet, G. Dutier, A. Yarovitsky, P. Todorov, I. Hamdi, I. Maurin, S. Saltiel, D. Sarkisyan, M. P. Gorza, D. Bloch, and M. Ducloy, “Exploring the van der Waals atom-surface attraction in the nanometric range,” Europhys. Lett. 77, 54001 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited