OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 16 — Aug. 2, 2010
  • pp: 16480–16485

Generation of continuously tunable fractional optical orbital angular momentum using internal conical diffraction

D. P. O’Dwyer, C. F. Phelan, Y. P. Rakovich, P. R. Eastham, J. G. Lunney, and J. F. Donegan  »View Author Affiliations

Optics Express, Vol. 18, Issue 16, pp. 16480-16485 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (901 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



When a left-circularly polarised Gaussian light beam, which has spin angular momentum (SAM) Jsp = σħ = 1ħ per photon, is incident along one of the optic axes of a slab of biaxial crystal it undergoes internal conical diffraction and propagates as a hollow cone of light in the crystal. The emergent beam is a superposition of equal amplitude zero and first order Bessel like beams. The zero order beam is left-circularly polarised with zero orbital angular momentum (OAM) Jorb = ħ = 0, while the first order beam is right-circularly polarized but carries OAM of Jorb = 1ħ per photon. Thus, taken together the two beams have zero SAM and Jorb = ½ħ per photon. In this paper we examine internal conical diffraction of an elliptically polarised beam, which has fractional SAM, and demonstrate an all-optical process for the generation light beams with fractional OAM up to ± 1ħ

© 2010 OSA

OCIS Codes
(050.1940) Diffraction and gratings : Diffraction
(260.1180) Physical optics : Crystal optics
(260.1440) Physical optics : Birefringence
(350.5030) Other areas of optics : Phase

ToC Category:
Physical Optics

Original Manuscript: May 20, 2010
Revised Manuscript: June 30, 2010
Manuscript Accepted: July 13, 2010
Published: July 21, 2010

D. P. O’Dwyer, C. F. Phelan, Y. P. Rakovich, P. R. Eastham, J. G. Lunney, and J. F. Donegan, "Generation of continuously tunable fractional optical orbital angular momentum using internal conical diffraction," Opt. Express 18, 16480-16485 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Allen, S. M. Barnett, and M. J. Padgett, Optical Angular Momentum (Institute of Physics Publishing, 2003).
  2. S. Franke-Arnold, L. Allen, and M. Padgett, “Advances in optical angular momentum,” Laser Photonics Rev. 2(4), 299–313 (2008). [CrossRef]
  3. D. McGloin and K. Dholakia, “Bessel beams: diffraction in a new light,” Contemp. Phys. 46(1), 15–28 (2005). [CrossRef]
  4. J. Arlt, K. Dholakia, L. Allen, and M. J. Padgett, “The production of multiringed Laguerre–Gaussian modes by computer-generated holograms,” J. Mod. Opt. 45(6), 1231–1237 (1998). [CrossRef]
  5. C. Rotschild, S. Zommer, S. Moed, O. Hershcovitz, and S. G. Lipson, “Adjustable spiral phase plate,” Appl. Opt. 43(12), 2397–2399 (2004). [CrossRef] [PubMed]
  6. E. Karimi, B. Piccirillo, E. Nagali, L. Marrucci, and E. Santamato, “Efficient generation and sorting of orbital angular momentum eigenmodes of light by thermally tuned q-plates,” Appl. Phys. Lett. 94(23), 231124 (2009). [CrossRef]
  7. L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96(16), 163905 (2006). [CrossRef] [PubMed]
  8. T. A. King, W. Hogervorst, N. S. Kazak, N. A. Khilo, and A. A. Ryzhevich, “Formation of higher-order Bessel light beams in biaxial crystals,” Opt. Commun. 187(4-6), 407–414 (2001). [CrossRef]
  9. C. F. Phelan, D. P. O’Dwyer, Y. P. Rakovich, J. F. Donegan, and J. G. Lunney, “Conical diffraction and Bessel beam formation with a high optical quality biaxial crystal,” Opt. Express 17(15), 12891–12899 (2009). [CrossRef] [PubMed]
  10. J. Arlt and K. Dholakia, “Generation of high-order Bessel beams by use of an axicon,” Opt. Commun. 177(1-6), 297–301 (2000). [CrossRef]
  11. J. Durnin, “Exact solutions for nondiffracting beams. I. The scalar theory,” J. Opt. Soc. Am. A 4(4), 651–654 (1987). [CrossRef]
  12. M. V. Berry, “Optical currents,” J. Opt. A, Pure Appl. Opt. 11(9), 094001 (2009). [CrossRef]
  13. J. B. Götte, K. O’Holleran, D. Preece, F. Flossmann, S. Franke-Arnold, S. M. Barnett, and M. J. Padgett, “Light beams with fractional orbital angular momentum and their vortex structure,” Opt. Express 16(2), 993–1006 (2008). [CrossRef] [PubMed]
  14. C. H. J. Schmitz, K. Uhrig, J. P. Spatz, and J. E. Curtis, “Tuning the orbital angular momentum in optical vortex beams,” Opt. Express 14(15), 6604–6612 (2006). [CrossRef] [PubMed]
  15. S. S. R. Oemrawsingh, X. Ma, D. Voigt, A. Aiello, E. R. Eliel, G. W. ’t Hooft, and J. P. Woerdman, “Experimental demonstration of fractional orbital angular momentum entanglement of two photons,” Phys. Rev. Lett. 95(24), 240501 (2005). [CrossRef] [PubMed]
  16. A. Vaziri, G. Weihs, and A. Zeilinger, “Superpositions of the orbital angular momentum for applications in quantum experiments,” J. Opt. B Quantum Semiclassical Opt. 4(2), 367 (2002). [CrossRef]
  17. W. R. Hamilton, “Third supplement to an essay on the theory of systems of rays,” Transactions of the Royal Irish Academy, 1–144 (1837).
  18. H. Lloyd, “On the phenomena presented by light in its passage along the axes of biaxial crystals,” Phil. Mag 1, 112–120 and 207–210 (1833).
  19. A. M. Belskii and A. P. Khapalyuk, “Internal conical refraction of bounded light beams in biaxial crystals,” Opt. Spectrosc. 44, 312–315 (1978).
  20. M. V. Berry, “Conical diffraction asymptotics: fine structure of Poggendorff rings and axial spike,” J. Opt. A, Pure Appl. Opt. 6(4), 289–300 (2004). [CrossRef]
  21. M. V. Berry, M. R. Jeffrey, and J. G. Lunney, “Conical diffraction: observations and theory,” Proc. R. Soc. Lond. A 462(2070), 1629–1642 (2006). [CrossRef]
  22. M. V. Berry, M. R. Jeffrey, and M. Mansuripur, “Orbital and spin angular momentum in conical diffraction,” J. Opt. A, Pure Appl. Opt. 7(11), 685–690 (2005). [CrossRef]
  23. D. Kasprowicz, M. Drozdowski, A. Majchrowski, and E. Michalski, “Spectroscopic properties of KGd(WO4)2: (Er, Yb) single crystals studied by Brillouin scattering method,” Opt. Mater. 30(1), 152–154 (2007). [CrossRef]
  24. M. J. Padgett and J. Courtial, “Poincaré-sphere equivalent for light beams containing orbital angular momentum,” Opt. Lett. 24(7), 430–432 (1999). [CrossRef]
  25. W. C. Soares, D. P. Caetano, and J. M. Hickmann, “Hermite-Bessel beams and the geometrical representation of nondiffracting beams with orbital angular momentum,” Opt. Express 14(11), 4577–4582 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited