OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 16 — Aug. 2, 2010
  • pp: 16499–16506

Pixel level optical-transfer-function design based on the surface-wave-interferometry aperture

Guoan Zheng, Yingmin Wang, and Changhuei Yang  »View Author Affiliations


Optics Express, Vol. 18, Issue 16, pp. 16499-16506 (2010)
http://dx.doi.org/10.1364/OE.18.016499


View Full Text Article

Enhanced HTML    Acrobat PDF (1956 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The design of optical transfer function (OTF) is of significant importance for optical information processing in various imaging and vision systems. Typically, OTF design relies on sophisticated bulk optical arrangement in the light path of the optical systems. In this letter, we demonstrate a surface-wave-interferometry aperture (SWIA) that can be directly incorporated onto optical sensors to accomplish OTF design on the pixel level. The whole aperture design is based on the bull’s eye structure. It composes of a central hole (diameter of 300 nm) and periodic groove (period of 560 nm) on a 340 nm thick gold layer. We show, with both simulation and experiment, that different types of optical transfer functions (notch, highpass and lowpass filter) can be achieved by manipulating the interference between the direct transmission of the central hole and the surface wave (SW) component induced from the periodic groove. Pixel level OTF design provides a low-cost, ultra robust, highly compact method for numerous applications such as optofluidic microscopy, wavefront detection, darkfield imaging, and computational photography.

© 2010 OSA

OCIS Codes
(110.4850) Imaging systems : Optical transfer functions
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Imaging Systems

History
Original Manuscript: June 21, 2010
Revised Manuscript: July 12, 2010
Manuscript Accepted: July 14, 2010
Published: July 21, 2010

Citation
Guoan Zheng, Yingmin Wang, and Changhuei Yang, "Pixel level optical-transfer-function design based on the surface-wave-interferometry aperture," Opt. Express 18, 16499-16506 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-16-16499


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. Williams, and O. Becklund, Introduction to the optical transfer function (SPIE-International Society for Optical Engineering, 2002).
  2. J. Goodman, Introduction to Fourier optics (Roberts & Company Publishers, 2005).
  3. T. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, and P. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998). [CrossRef]
  4. T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett. 26(24), 1972–1974 (2001). [CrossRef]
  5. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002). [CrossRef] [PubMed]
  6. T. Thio, H. Lezec, T. Ebbesen, K. Pellerin, G. Lewen, A. Nahata, and R. Linke, “Giant optical transmission of sub-wavelength apertures: physics and applications,” Nanotechnology 13(3), 429–432 (2002). [CrossRef]
  7. F. J. Garcı́a-Vidal, L. Martı́n-Moreno, H. J. Lezec, and T. W. Ebbesen, “Focusing light with a single subwavelength aperture flanked by surface corrugations,” Appl. Phys. Lett. 83(22), 4500 (2003). [CrossRef]
  8. D. Pacifici, H. Lezec, and H. Atwater, “All-optical modulation by plasmonic excitation of CdSe quantum dots,” Nat. Photonics 1(7), 402–406 (2007). [CrossRef]
  9. E. Laux, C. Genet, T. Skauli, and T. Ebbesen, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nat. Photonics 2(3), 161–164 (2008). [CrossRef]
  10. H. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature 452(7188), 728–731 (2008). [CrossRef] [PubMed]
  11. J. O. Tegenfeldt, O. Bakajin, C.-F. Chou, S. S. Chan, R. Austin, W. Fann, L. Liou, E. Chan, T. Duke, and E. C. Cox, “Near-field scanner for moving molecules,” Phys. Rev. Lett. 86(7), 1378–1381 (2001). [CrossRef] [PubMed]
  12. X. Heng, D. Erickson, L. R. Baugh, Z. Yaqoob, P. W. Sternberg, D. Psaltis, and C. Yang, “Optofluidic microscopy--a method for implementing a high resolution optical microscope on a chip,” Lab Chip 6(10), 1274–1276 (2006). [CrossRef] [PubMed]
  13. X. Cui, L. M. Lee, X. Heng, W. Zhong, P. W. Sternberg, D. Psaltis, and C. Yang, “Lensless high-resolution on-chip optofluidic microscopes for Caenorhabditis elegans and cell imaging,” Proc. Natl. Acad. Sci. U.S.A. 105(31), 10670–10675 (2008). [CrossRef] [PubMed]
  14. X. Heng, X. Cui, D. W. Knapp, J. Wu, Z. Yaqoob, E. J. McDowell, D. Psaltis, and C. Yang, “Characterization of light collection through a subwavelength aperture from a point source,” Opt. Express 14(22), 10410–10425 (2006). [CrossRef] [PubMed]
  15. S. Maier, Plasmonics: fundamentals and applications (Springer Verlag, 2007).
  16. H. Lezec and T. Thio, “Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,” Opt. Express 12(16), 3629–3651 (2004). [CrossRef] [PubMed]
  17. L. Chen, J. T. Robinson, and M. Lipson, “Role of radiation and surface plasmon polaritons in the optical interactions between a nano-slit and a nano-groove on a metal surface,” Opt. Express 14(26), 12629–12636 (2006). [CrossRef] [PubMed]
  18. G. Gay, O. Alloschery, B. Viaris de Lesegno, C. O’Dwyer, J. Weiner, and H. J. Lezec, “The optical response of nanostructured surfaces and the composite diffracted evanescent wave model,” Nat. Phys. 2(4), 262–267 (2006). [CrossRef]
  19. P. Lalanne and J. Hugonin, “Interaction between optical nano-objects at metallo-dielectric interfaces,” Nat. Phys. 2(8), 551–556 (2006). [CrossRef]
  20. L. Aigouy, P. Lalanne, J. P. Hugonin, G. Julié, V. Mathet, and M. Mortier, “Near-field analysis of surface waves launched at nanoslit apertures,” Phys. Rev. Lett. 98(15), 153902 (2007). [CrossRef] [PubMed]
  21. B. Ung and Y. Sheng, “Optical surface waves over metallo-dielectric nanostructures: Sommerfeld integrals revisited,” Opt. Express 16(12), 9073–9086 (2008). [CrossRef] [PubMed]
  22. G. Zheng, X. Cui, and C. Yang, “Surface-wave-enabled darkfield aperture for background suppression during weak signal detection,” Proc. Natl. Acad. Sci. U.S.A. 107(20), 9043–9048 (2010). [CrossRef] [PubMed]
  23. E. Palik, and G. Ghosh, Handbook of optical constants of solids (Academic press, 1985).
  24. J. B. Leen, P. Hansen, Y. T. Cheng, and L. Hesselink, “Improved focused ion beam fabrication of near-field apertures using a silicon nitride membrane,” Opt. Lett. 33(23), 2827–2829 (2008). [CrossRef] [PubMed]
  25. http://www.imagine-optic.com/iop_products_wavefront-analysis-sensors_main_en.php .
  26. R. Ng, M. Levoy, M. Bredif, G. Duval, M. Horowitz, and P. Hanrahan, “Light field photography with a hand-held plenoptic camera,” Computer Science Technical Report CSTR 2, (2005).
  27. P. Green, W. Sun, W. Matusik, and F. Durand, “Multi-aperture photography,” ACM Trans. Graph. 26(3), 68 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited