OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 16 — Aug. 2, 2010
  • pp: 16526–16538

Complex-field measurement of ultrafast dynamic optical waveforms based on real-time spectral interferometry

Mohammad H. Asghari, Yongwoo Park, and José Azaña  »View Author Affiliations


Optics Express, Vol. 18, Issue 16, pp. 16526-16538 (2010)
http://dx.doi.org/10.1364/OE.18.016526


View Full Text Article

Enhanced HTML    Acrobat PDF (11532 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Several methods are now available for single-shot measurement of the complex field (amplitude and phase profiles) of optical waveforms with resolutions down to the sub-picosecond range. As a main critical limitation, all these techniques exhibit measurement update rates typically slower than a few Hz. It would be very challenging to directly upgrade the update rate of any of these available methods beyond a few kHz. By combining spectral interferometry with dispersion-induced real-time optical Fourier transformation, here we demonstrate single-shot complex-field measurements of optical waveforms with a resolution of ~400 fs over a record length as long as ~350 ps, corresponding to a large record-length-to-resolution ratio of ~900. This performance is achieved at a measurement update rate of ~17 MHz, i.e. at least one thousand times faster than with any previous single-shot complex-field THz-bandwidth optical signal characterization method.

© 2010 OSA

OCIS Codes
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(200.4740) Optics in computing : Optical processing
(320.7100) Ultrafast optics : Ultrafast measurements

ToC Category:
Ultrafast Optics

History
Original Manuscript: May 21, 2010
Revised Manuscript: June 23, 2010
Manuscript Accepted: June 24, 2010
Published: July 22, 2010

Citation
Mohammad H. Asghari, Yongwoo Park, and José Azaña, "Complex-field measurement of ultrafast dynamic optical waveforms based on real-time spectral interferometry," Opt. Express 18, 16526-16538 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-16-16526


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. Dorrer, “High-speed measurements for optical telecommunication systems,” IEEE J. Quantum Electron. 12(4), 843–858 (2006). [CrossRef]
  2. M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Silicon-chip-based ultrafast optical oscilloscope,” Nature 456(7218), 81–84 (2008). [CrossRef] [PubMed]
  3. T. J. Ahn, Y. Park, and J. Azaña, “Fast and accurate group delay ripple measurement technique for ultralong chirped fiber Bragg gratings,” Opt. Lett. 32(18), 2674–2676 (2007). [CrossRef] [PubMed]
  4. Y. Park, T. J. Ahn, and J. Azaña, “Real-time complex temporal response measurements of ultrahigh-speed optical modulators,” Opt. Express 17(3), 1734–1745 (2009). [CrossRef] [PubMed]
  5. R. T. Schermer, F. Bucholtz, C. A. Villarruel, J. Gil Gil, T. D. Andreadis, and K. J. Williams, “Investigation of electrooptic modulator disruption by microwave-induced transients,” Opt. Express 17(25), 22586–22602 (2009). [CrossRef]
  6. H. Xia, C. Wang, S. Blais, and J. Yao, “Ultrafast and precise interrogation of fiber Bragg grating sensor based on wavelength-to-time mapping incorporating higher order dispersion,” J. Lightwave Technol. 28(3), 254–261 (2010). [CrossRef]
  7. D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450(7172), 1054–1057 (2007). [CrossRef] [PubMed]
  8. K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature 458(7242), 1145–1149 (2009). [CrossRef] [PubMed]
  9. I. Walmsley and C. Dorrer, “Characterization of ultrashort electromagnetic pulses,” Adv. Opt. Photon. 1(2), 308–437 (2009). [CrossRef]
  10. N. K. Fontaine, R. P. Scott, L. Zhou, F. M. Soares, J. P. Heritage, and S. J. B. Yoo, “Real-time full-field arbitrary optical waveform measurement,” Nat. Photonics 4(4), 248–254 (2010). [CrossRef]
  11. R. Salem, M. A. Foster, A. C. Turner-Foster, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “High-speed optical sampling using a silicon-chip temporal magnifier,” Opt. Express 17(6), 4324–4329 (2009). [CrossRef] [PubMed]
  12. D. J. Kane and R. Trebino, “Single-shot measurement of the intensity and phase of an arbitrary ultrashort pulse by using frequency-resolved optical gating,” Opt. Lett. 18(10), 823–825 (1993). [CrossRef] [PubMed]
  13. M. E. Anderson, A. Monmayrant, S. P. Gorza, P. Wasylczyk, and I. A. Walmsley, “SPIDER: A decade of measuring ultrashort pulses,” Laser Phys. Lett. 5(4), 259–266 (2008). [CrossRef]
  14. C. Dorrer and I. Kang, “Highly sensitive direct characterization of femtosecond pulses by electro-optic spectral shearing interferometry,” Opt. Lett. 28(6), 477–479 (2003). [CrossRef] [PubMed]
  15. J. Bromage, C. Dorrer, I. A. Begishev, N. G. Usechak, and J. D. Zuegel, “Highly sensitive, single-shot characterization for pulse widths from 0.4 to 85 ps using electro-optic shearing interferometry,” Opt. Lett. 31(23), 3523–3525 (2006). [CrossRef] [PubMed]
  16. P. Bowlan, P. Gabolde, A. Shreenath, K. McGresham, R. Trebino, and S. Akturk, “Crossed-beam spectral interferometry: a simple, high-spectral-resolution method for completely characterizing complex ultrashort pulses in real time,” Opt. Express 14(24), 11892–11900 (2006). [CrossRef] [PubMed]
  17. V. R. Supradeepa, D. E. Leaird, and A. M. Weiner, “Single shot amplitude and phase characterization of optical arbitrary waveforms,” Opt. Express 17(16), 14434–14443 (2009). [CrossRef] [PubMed]
  18. N. K. Fontaine, R. P. Scott, J. P. Heritage, and S. J. B. Yoo, “Near quantum-limited, single-shot coherent arbitrary optical waveform measurements,” Opt. Express 17(15), 12332–12344 (2009). [CrossRef] [PubMed]
  19. L. Lepetit, G. Chériaux, and M. Joffre, “Linear technique of phase measurement by femtosecond spectral interferometry for applications in spectroscopy,” J. Opt. Soc. Am. B 12(12), 2467–2474 (1995). [CrossRef]
  20. Y. C. Tong, L. Y. Chan, and H. K. Tsang, “Fibre dispersion or pulse spectrum measurement using a sampling oscilloscope,” Electron. Lett. 33(11), 983–985 (1997). [CrossRef]
  21. J. Azaña and M. A. Muriel, “Real-time optical spectrum analysis based on the time-space duality in chirped fiber gratings,” IEEE J. Quantum Electron. 36(5), 517–526 (2000). [CrossRef]
  22. Y. Park, T. J. Ahn, J. C. Kieffer, and J. Azaña, “Optical frequency domain reflectometry based on real-time Fourier transformation,” Opt. Express 15(8), 4597–4616 (2007). [CrossRef] [PubMed]
  23. D. R. Solli, J. Chou, and B. Jalali, “Amplified wavelength-time transformation for real-time spectroscopy,” Nat. Photonics 2(1), 48–51 (2008). [CrossRef]
  24. R. M. Fortenberry, W. V. Sorin, H. Lin, and S. A. Newton, “Low-power ultrashort optical pulse characterization using linear dispersion,” in Conference on Optical Fiber Communication, 290-291 (1997).
  25. C. Dorrer, “Chromatic dispersion characterization by direct instantaneous frequency measurement,” Opt. Lett. 29(2), 204–206 (2004). [CrossRef] [PubMed]
  26. T. J. Ahn, Y. Park, and J. Azaña, “Improved optical pulse characterization based on feedback-controlled Hilbert transformation temporal interferometry,” IEEE Photon. Technol. Lett. 20(7), 475–477 (2008). [CrossRef]
  27. C. Dorrer, “Single-shot measurement of the electric field of optical waveforms by use of time magnification and heterodyning,” Opt. Lett. 31(4), 540–542 (2006). [CrossRef] [PubMed]
  28. http://www.thorlabs.com/NewGroupPage9_PF.cfm?Guide=10&Category_ID=219&ObjectGroup_ID=2005
  29. S. Moon and D. Y. Kim, “Normalization detection scheme for high-speed optical frequency-domain imaging and reflectometry,” Opt. Express 15(23), 15129–15146 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited