OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 16 — Aug. 2, 2010
  • pp: 16539–16545

Three-dimensional ferroelectric domain visualization by Čerenkov-type second harmonic generation

Yan Sheng, Andreas Best, Hans-Jürgen Butt, Wieslaw Krolikowski, Ady Arie, and Kaloian Koynov  »View Author Affiliations

Optics Express, Vol. 18, Issue 16, pp. 16539-16545 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (853 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We show that focusing a laser light onto the boundary between antiparallel ferroelectric domains leads to the non-collinear generation of two second harmonic (SH) beams. The beams are emitted in a plane normal to the domain boundaries at the angles that satisfy the Čerenkov-type phase matching condition. Moreover, these beam disappear when the laser light is focused on a homogenous part of a single domain. We utilize this effect for 3-dimensional visualization of fine details of the ferroelectric domain pattern with a submicron accuracy.

© 2010 Optical Society of America

OCIS Codes
(160.2260) Materials : Ferroelectrics
(180.6900) Microscopy : Three-dimensional microscopy
(190.0190) Nonlinear optics : Nonlinear optics
(190.2620) Nonlinear optics : Harmonic generation and mixing

ToC Category:
Nonlinear Optics

Original Manuscript: May 14, 2010
Revised Manuscript: June 16, 2010
Manuscript Accepted: June 16, 2010
Published: July 22, 2010

Yan Sheng, Andreas Best, Hans-Jürgen Butt, Wieslaw Krolikowski, Ady Arie, and Kaloian Koynov, "Three-dimensional ferroelectric domain visualization by Čerenkov-type second harmonic generation," Opt. Express 18, 16539-16545 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, "Quasi-phase-matched second harmonic generation: tuning and tolerances," IEEE J. Quantum Electron. 28, 2631-2654 (1992). [CrossRef]
  2. S. Zhu, Y. Y. Zhu, and N. B. Ming, "Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice," Science 278, 843-846 (1997). [CrossRef]
  3. V. Berger, "Nonlinear Photonic Crystals," Phys. Rev. Lett. 81, 4136-4139 (1998). [CrossRef]
  4. N. G. R. Broderick, G.W. Ross, H. L. Offerhaus, D. J. Richardson, and D. C. Hanna, "Hexagonally poled lithium niobate: a two-dimensional nonlinear photonic crystal," Phys. Rev. Lett. 84, 4345-4348 (2000). [CrossRef] [PubMed]
  5. Q1. T. Ellenbogen, N. Voloch-Bloch, A. Ganany-Padowicz, and A. Arie, "Nonlinear generation and manipulation of Airy beams," Nat. Photonics 3, 395-398 (2009). [CrossRef]
  6. P. Xu, S. H. Ji, S. N. Zhu, X. Q. Yu, J. Sun, H. T. Wang, J. L. He, Y. Y. Zhu, and N. B. Ming, "Conical second harmonic generation in a two-dimensional c(2) photonic crystal: a hexagonally poled LiTaO3 crystal," Phys. Rev. Lett. 93, 133904 (2004). [CrossRef] [PubMed]
  7. S. M. Saltiel, Y. Sheng, N. Voloch-Bloch, D. N. Neshev, W. Krolikowski, A. Arie, K. Koynov, and Y. S. Kivshar, "Cerenkov-type second-harmonic generation in two-dimensional nonlinear photonic structures," IEEE J. Quantum Electron. 45, 1465-1472 (2009). [CrossRef]
  8. A. R. Tunyagi, M. Ulex, and K. Betzler, "Noncolllinear optical frequency doubling in strontium barium niobate," Phys. Rev. Lett. 90, 243901 (2003). [CrossRef] [PubMed]
  9. Y. Zhang, F. M. Wang, K. Geren, S. N. Zhu, and M. Xiao, "Second-harmonic imaging from a modulated domain structure," Opt. Lett. 35, 178-180 (2010). [CrossRef] [PubMed]
  10. A. Fragemann, V. Pasiskevicius, and F. Laurell, "Second-order nonlinearites in the domain walls of periodically poled KTiOPO4," Appl. Phys. Lett. 85, 375-377 (2004). [CrossRef]
  11. S. Matsumoto, E. J. Lim, H. M. Hertz, and M. M. Fejer, "Quasiphase-matched second harmonic generation of blue light in electrically periodically-poled lithium tantalate waveguides," Electron. Lett. 27, 2040-2042 (1991). [CrossRef]
  12. J. A. Hooton andW. J. Merz, "Etch patterns and ferroelectric domains in BaTiO3 single crystal," Phys. Rev. 98, 409-413 (1955). [CrossRef]
  13. S. N. Zhu and W. W. Cao, "Direct observation of ferroelectric domains in LiTaO3 using environmental scanning electron microscopy," Phys. Rev. Lett. 79, 2558-2561 (1997). [CrossRef]
  14. T. Jungk, A. Hoffmann, and E. Soergel, "Contrast mechanisms for the detection of ferroelectric domains with scanning force microscopy," New J. Phys. 11, 033092 (2009). [CrossRef]
  15. Q2. E. Soergel, "Visualization of ferroelectric domains in bulk single crystals," Appl. Phys. 81, 729-752 (2005). [CrossRef]
  16. V. Y. Shur, E. L. Rumyantsev, R. G. Batchko, G. D. Miller, M. M. Fejer, and R. L. Byer, "Domain kinetics in the formation of a periodic domain structure in lithium niobate," Phys. Solid State 41, 1681-1687 (1999). [CrossRef]
  17. G. Rosenman, K. Garb, A. Skliar, M. Oron, D. Eger, and M. Katz, "Domain broadening in quasi-phase-matched nonlinear optical devices," Appl. Phys. Lett. 73, 865-867 (1998). [CrossRef]
  18. Y. Sheng, T. Wang, B. Q. Ma, E. Qu, B. Cheng, and D. Zhang, "Anisotropy of domain broadening in periodically poled lithium niobate crystal," Appl. Phys. Lett. 88, 041121 (2006). [CrossRef]
  19. P. G. Ni, B. Q. Ma, X. H. Wang, B. Cheng, and D. Zhang, "Second-harmonic generation in two-dimensional periodically poled lithium niobate using second-order quasiphase matching," Appl. Phys. Lett. 82, 4230-4232 (2003). [CrossRef]
  20. S. I. Bozhevolnyi, J. M. Hvam, K. Pedersen, F. Laurell, H. Karlsson, T. Skettrup, and M. Belmonte, "Secondharmonic imaging of ferroelectric domain walls," Appl. Phys. Lett. 73, 1814-1816 (1998). [CrossRef]
  21. V. Grubsky, S. MacCormack, and J. Feinberg, "All-optical three-dimensional mapping of 180± domains hidden in a BaTiO3 crystal," Opt. Lett. 21, 6-8 (1996). [CrossRef] [PubMed]
  22. J. Harris, G. Norris, and G. McConnell, "Characterization of periodically poled materials using nonlinear microscopy," Opt. Express 16, 5667-5672 (2008). [CrossRef] [PubMed]
  23. Q3. M. Fl¨orsheimer, R. Paschotta, U. Kubitscheck, C. Brillert, D. Hofmann, L. Heuer, G. Schreiber, C. Verbeek, W. Sohler and H. Fuchs, "Second-harmonic imaging of ferroelectric domains in LiNbO3 with micron resolution in lateral and axial directions,"Appl. Phys. B-Lasers Opt. 67, 593-599 (1998). [CrossRef]
  24. Q4. A. Rosenfeldt and M. Florsheimer, "Nondestructive remote imaging of ferroelectric domain distributions with high three-dimensional resolution," Appl. Phys. B-Lasers Opt. 73, 523-529 (2001).
  25. Y. Uesu, H. Yokota, S. Kawado, S. Kawado, J. Kaneshiro, S. Kurimura, and N. Kato, "Three-dimensional observation of periodically poled domains in a LiTaO3 quasiphase matching crystal by second-harmonic generation microscope," Appl. Phys. Lett. 91, 182904 (2007). [CrossRef]
  26. Q5. Y. Sheng, J. Dou, B. Cheng and D. Zhang, "Effective generation of red-green-blue laser in a two-dimensional decagonal photonic superlattice," Appl. Phys. B-Lasers Opt. 87, 603-606 (2007). [CrossRef]
  27. Y. Sheng, K. Koynov, and D. Zhang, "Collinear second harmonic generation of 20 wavelengths in a single twodimensional decagonal nonlinear photonic quasi-crystal," Opt. Commun. 282, 3602-3606 (2009). [CrossRef]
  28. G. J. Edwards and M. Lawrence, "A temperature-dependent dispersion equation for congruently grown lithium niobate," Opt. Quantum Electron. 16, 373-375 (1984). [CrossRef]
  29. X. Deng, H. Ren, Y. Zheng, K. Liu, and X. Chen, "Significantly enhanced second order nonlinearity in domain walls of ferroelectrics," Phys. Opt. arXiv:1005.2925v1 (2010).
  30. K. Hayata, K. Yanagawa, and M. Koshiba, "Enhancement of the guided-wave second-harmonic generation in the form of Cerenkov radiation," Appl. Phys. Lett. 56, 206-208 (1990). [CrossRef]
  31. Y. Sheng, S. M. Saltiel, and K. Koynov, "Cascaded third-harmonic generation in a single short-range-ordered nonlinear photonic crystal," Opt. Lett. 34, 656-658 (2009). [CrossRef] [PubMed]
  32. Y. Sheng, J. Dou, B. Ma, B. Cheng, and D. Zhang, "Broadband efficient second harmonic generation in media with a short-range order," Appl. Phys. Lett. 91, 011101 (2007). [CrossRef]
  33. Y. Sheng, J. Dou, B. Ma, J. Li, D. Ma, B. Cheng, and D. Zhang, "Temperature and angle tuning of second harmonic generation in media with a short-range order, " Appl. Phys. Lett. 91, 101109 (2007). [CrossRef]
  34. A. Bahabad, A. Ganany-Padowicz, and A. Arie, "Engineering two-dimensional nonlinear photonic quasi-crystal," Opt. Lett. 33, 1386-1388 (2008). [CrossRef] [PubMed]
  35. I. Juwiler and A. Arie, "Efficient frequency doubling by a phase-compensated crystal in a semimonolithic cavity," Appl. Opt. 42, 7163-7169 (2003). [CrossRef]
  36. R. Fischer, S. M. Saltiel, D. N. Neshev, W. Krolikowski, and Y. S. Kivshar, "Broadband femtosecond frequency doubling in random media," Appl. Phys. Lett. 89, 191105 (2006). [CrossRef]
  37. W. Wang, K. Kalinowski, Y. Kong, C. Cojocaru, J. Trull, R. Vilaseca, M. Scalora, W. Krolikowski, and Y. S. Kivshar, "Third-harmonic generation via broadband cascading in disordered quadratic nonlinear media," Opt. Express. 17, 20117 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

Supplementary Material

» Media 1: AVI (279 KB)     
» Media 2: AVI (1965 KB)     
» Media 3: AVI (523 KB)     
» Media 4: AVI (2857 KB)     
» Media 5: AVI (712 KB)     
» Media 6: AVI (2733 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited